기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[data analysis] Jarque-Bera Test

Jarque-Bera Test

관련된 내용

정규분포는 모수 μ, σ에 상관없이 분포의 형태적인 특성을 가집니다(확률과 주요통계량: 왜도(skewness)와 첨도(kurtosis) 참조).

  • 왜도(skewness, 3차 모멘트)는 pdf의 대칭정도를 나타내는 지표로 표준정규분포의 왜도는 0.
  • 첨도(kuitosis, 4차 모멘트)는 평균 주위에 데이터의 밀집정도를 나타내는 것으로 표준정규분포의 첨도는 3.

Jarque-Bera(JB) 검정은 왜도와 첨도를 사용하여 정규성을 추정합니다. 그러므로 왜도와 첨도에 민감한 시계열 데이터나 회귀모델로 생성되는 오차 분석에 주로 적용됩니다. 또한 이 검정은 기준이되는 분포와의 비교가 아니므로 표준화등의 조정이 없는 원시데이터를 직접 적용합니다. 이 검정의 귀무가설(H0)과 대립가설(H1)은 다음과 같습니다.

H0: 정규분포를 따릅니다.
H1: 정규분포를 따르지 않습니다.

이 검정의 검정통계량은 식 1과 같이 계산됩니다.

\begin{align}\text{jb}&=n\left(\frac{S^2}{6}+\frac{(K-3)^2}{24} \right)\\ & S:\, \text{왜도},\; K:\, \text{첨도}\end{align} (식 1)

이 검정통계량은 자유도 2인 χ2분포를 따릅니다. 그러므로 이 분포에 적용하여 계산된 검정통계량에 대응하는 p-value를 결정할 수 있습니다.

정규분포의 경우 S=0, K=3 ⇒ JB 통계량은 0입니다.

이 검정은 statsmodels.stats.stattools.jarque_bera() 또는 scipy.stats.jarque_bera() 함수를 사용합니다. 첫번째 함수의 경우는 통계량과 p-value, 왜도와 첨도를 반환하지만 두번째 함수의 경우 통계량과 p-value만을 계산합니다.

예 1)

Jarque-Bera 검정을 사용하여 다음 코드로 호출하여 표준화한 kospi 지표와 정규분포를 따르는 인공샘플(x)의 정규성을 비교합시다.

st=pd.Timestamp(2024,1,1)
et=pd.Timestamp(2024, 5, 30)
kos=fdr.DataReader("KS11",st, et)["Close"]
kos1=(kos-kos.mean())/kos.std()
x=stats.norm.rvs(size=1000, random_state=3)
kosJB1=stats.jarque_bera(kos1)
print("통계량: %.3f, p-value: %.3f" %(kosJB1[0], kosJB1[1]))
통계량: 10.452, p-value: 0.005
kosJB2=statsmodels.stats.stattools.jarque_bera(kos1)
print('통계량: %.3f, p-value: %.3f, skew: %.3f, kurt: %.3f' %(kosJB2[0], kosJB2[1], kosJB2[2], kosJB2[3]))
통계량: 10.452, p-value: 0.005, skew: -0.778, kurt: 2.702
rand=stats.jarque_bera(x)
print("통계량: %.3f, p-value: %.3f" %(rand[0], rand[1]))
통계량: 0.209, p-value: 0.901
rand_st=statsmodels.stats.stattools.jarque_bera(x)
print('통계량: %.3f, p-value: %.3f, 왜도: %.3f, 첨도: %.3f' %(rand_st[0], rand_st[1], rand_st[2], rand_st[3]))
통계량: 0.209, p-value: 0.901, 왜도: -0.007, 첨도: 2.931

정규분포를 따르는 랜덤수에 대한 JB 검정에서 귀무가설은 채택은 당연합니다. 실제 데이터인 kos의 JB 검정 결과에서 랜덤수들에 비해 왼쪽으로 기울어진 형태를 보일 것입니다. 이것이 낮은 유의확률의 원인이 됩니다. 즉, 자료 kos는 정규분포에 부합하지 않는다고 할 수 있습니다. 즉, 귀무가설을 기각합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...