Jarque-Bera Test
관련된 내용
- Q-Q plot
- shapiro-Wilk test
- Kolmogorov-Smirnov Test
- Anderson-Darling 검정
- Jarque-Bera test
정규분포는 모수 μ, σ에 상관없이 분포의 형태적인 특성을 가집니다(확률과 주요통계량: 왜도(skewness)와 첨도(kurtosis) 참조).
- 왜도(skewness, 3차 모멘트)는 pdf의 대칭정도를 나타내는 지표로 표준정규분포의 왜도는 0.
- 첨도(kuitosis, 4차 모멘트)는 평균 주위에 데이터의 밀집정도를 나타내는 것으로 표준정규분포의 첨도는 3.
Jarque-Bera(JB) 검정은 왜도와 첨도를 사용하여 정규성을 추정합니다. 그러므로 왜도와 첨도에 민감한 시계열 데이터나 회귀모델로 생성되는 오차 분석에 주로 적용됩니다. 또한 이 검정은 기준이되는 분포와의 비교가 아니므로 표준화등의 조정이 없는 원시데이터를 직접 적용합니다. 이 검정의 귀무가설(H0)과 대립가설(H1)은 다음과 같습니다.
H0: 정규분포를 따릅니다. |
H1: 정규분포를 따르지 않습니다. |
이 검정의 검정통계량은 식 1과 같이 계산됩니다.
\begin{align}\text{jb}&=n\left(\frac{S^2}{6}+\frac{(K-3)^2}{24} \right)\\ & S:\, \text{왜도},\; K:\, \text{첨도}\end{align} | (식 1) |
이 검정통계량은 자유도 2인 χ2분포를 따릅니다. 그러므로 이 분포에 적용하여 계산된 검정통계량에 대응하는 p-value를 결정할 수 있습니다.
정규분포의 경우 S=0, K=3 ⇒ JB 통계량은 0입니다.
이 검정은 statsmodels.stats.stattools.jarque_bera() 또는 scipy.stats.jarque_bera() 함수를 사용합니다. 첫번째 함수의 경우는 통계량과 p-value, 왜도와 첨도를 반환하지만 두번째 함수의 경우 통계량과 p-value만을 계산합니다.
예 1)
Jarque-Bera 검정을 사용하여 다음 코드로 호출하여 표준화한 kospi 지표와 정규분포를 따르는 인공샘플(x)의 정규성을 비교합시다.
st=pd.Timestamp(2024,1,1) et=pd.Timestamp(2024, 5, 30) kos=fdr.DataReader("KS11",st, et)["Close"] kos1=(kos-kos.mean())/kos.std() x=stats.norm.rvs(size=1000, random_state=3)
kosJB1=stats.jarque_bera(kos1) print("통계량: %.3f, p-value: %.3f" %(kosJB1[0], kosJB1[1]))
통계량: 10.452, p-value: 0.005
kosJB2=statsmodels.stats.stattools.jarque_bera(kos1) print('통계량: %.3f, p-value: %.3f, skew: %.3f, kurt: %.3f' %(kosJB2[0], kosJB2[1], kosJB2[2], kosJB2[3]))
통계량: 10.452, p-value: 0.005, skew: -0.778, kurt: 2.702
rand=stats.jarque_bera(x) print("통계량: %.3f, p-value: %.3f" %(rand[0], rand[1]))
통계량: 0.209, p-value: 0.901
rand_st=statsmodels.stats.stattools.jarque_bera(x) print('통계량: %.3f, p-value: %.3f, 왜도: %.3f, 첨도: %.3f' %(rand_st[0], rand_st[1], rand_st[2], rand_st[3]))
통계량: 0.209, p-value: 0.901, 왜도: -0.007, 첨도: 2.931
정규분포를 따르는 랜덤수에 대한 JB 검정에서 귀무가설은 채택은 당연합니다. 실제 데이터인 kos의 JB 검정 결과에서 랜덤수들에 비해 왼쪽으로 기울어진 형태를 보일 것입니다. 이것이 낮은 유의확률의 원인이 됩니다. 즉, 자료 kos는 정규분포에 부합하지 않는다고 할 수 있습니다. 즉, 귀무가설을 기각합니다.
댓글
댓글 쓰기