기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

[python]확률과 주요통계량: 왜도(skewness)와 첨도(kurtosis)

왜도와 첨도

관련내용

왜도와 첨도는 평균, 분산과 함께 확률분포의 특성을 나타내는 주요 통계량으로 사용됩니다. 왜도(skewness)는 평균(중심)을 기준으로 분포의 좌우의 비대칭성의 정도를 나타내고 첨도(kurtosis)는 분포의 peak 즉 봉우리의 뾰족한 정도를 나타내는 통계량입니다.

왜도와 첨도는 확률변수의 개개의 값과 평균의 차이에 대해 3제곱과 4제곱을 적용한 새로운 확률변수에 대한 기대값입니다. 즉, 두 통계량은 각각 3차와 4차 모멘트가 됩니다. 왜도는 식 1, 첨도는 식 2과 같이 정의됩니다.

왜도(skewness)
  • 3차 모멘트
  • 표준정규분포의 왜도 = 0
  • skewness > 0: 분포가 오른쪽으로 기울어진 형태(skewed to right)
  • skewness < 0: 분포가 왼쪽으로 기울어진 형태(skew to left)
\begin{align}\text{skewness}&=E\left(\frac{X-\mu}{\sigma} \right)^3\\&=\frac{E(X-\mu)^3}{\sigma^3} \end{align} (식 1)
첨도(kurtosis)
  • 4차 모멘트는 첨도를 나타내는데 실제적으로 -3을 고려합니다.
  • 표준정규분포의 첨도= 0(4차 모멘트 = 3): mesokurtic(정규분포)
  • kurtosis > 0: letokurtic 또는 fat-tailed
\begin{align}E\left(\frac{X-\mu}{\sigma} \right)^4-3\\&=\frac{e(X-\mu)^4}{\sigma^4}-3 \end{align} (식 2)

주가자료(stock data)의 경우는 leptokurtic 즉, 정규분포보다 두툼한 꼬리와 두개의 봉우리가 생성되는 보이는 경향이 일반적입니다.

성공확률 p인 베르누이 시행을 반복하는 이항분포(Binomial distribution)를 생각해 봅니다. 이항분포의 확률함수는 식 3과 같이 조합(combination)과 시행당 확률의 곱으로 나타냅니다.

$$f(x)=\binom{n}{s}p^s(1-p)^{n-s}$$ (식 3)
n: 총 시행횟수, s: 성공횟수, p: 시행당 성공확률

이항분포의 확률질량함수(pmf)는 scipy.stats.binom.pmf() 메서드를 적용하여 계산할 수 있습니다. 예로 시행횟수(n), 성공횟수(s), 시행당 확률(p)가 각각 100, 10, 0.1의 조건에서 pmf를 계산해 봅니다.

stats.binom.pmf(10, 100, 1/10).round(3)
0.132

성공확률 0.1인 사건을 10번 시행에서 확률분포의 기대값, 분산, 왜도, 그리고 첨도는 다음과 같이 계산됩니다.

n=10
p=0.1
s=np.arange(n+1)
pf=stats.binom.pmf(s, n, p)
print(pf.round(3))
[0.349 0.387 0.194 0.057 0.011 0.001 0.    0.    0.    0.    0.   ]
E=np.sum(s*pf); E.round(3)
1
var=np.sum((s-E)**2*pf);var.round(3)
0.9
ske=np.sum((s-E)**3*pf)/var**(3/2); ske.round(3)
0.843
kurt=np.sum((s-E)**4/var**(4/2)*pf)-3;kurt.round(3)
0.511

위 결과는 stats.binom.stats(n, p, moments="mvsk") 메서드에 의해 확인할 수 있습니다. 이 메서드의 매개변수 moments에 전달하는 인수 mvsk는 각각 평균, 분산, 왜도 그리고 첨도를 나타냅니다.

re=stats.binom.stats(n,p, moments="mvsk")
print(np.array(re).round(2))
[1.   0.9  0.84 0.51]

예 1)

총 시행횟수 10번의 베루누이 시행에서의 시행당 확률이 0.1, 0.5, 0.8인 조건에 각각의 평균, 분산, 왜도, 첨도를 결정합니다.

n=10
p=np.array([0.1, 0.5, 0.8])
s=np.arange(n).reshape(10,1)
pmf=stats.binom.pmf(s, n, p)
pd.DataFrame(pmf, columns=["p=0.1", "p=0.5", "p=0.8"]).round(3)
p=0.1 p=0.5 p=0.8
0 0.349 0.001 0.000
1 0.387 0.010 0.000
2 0.194 0.044 0.000
3 0.057 0.117 0.001
4 0.011 0.205 0.006
5 0.001 0.246 0.026
6 0.000 0.205 0.088
7 0.000 0.117 0.201
8 0.000 0.044 0.302
9 0.000 0.010 0.268
re=stats.binom.stats(n, p, moments="mvsk")
pd.DataFrame(re, index=["평균","분산","왜도", "첨도"], columns=["p=0.1","p=0.5","p=0.8"]).round(3)
p=0.1p=0.5 p=0.8
평균 1.000 5.0 8.000
분산 0.900 2.5 1.600
왜도 0.843 0.0 -0.474
첨도 0.511 -0.2 0.025

위 결과는 그림 1과 같이 시각화할 수 있습니다.

그림 1 확률 변화에 따른 분포의 형태.
plt.figure(figsize=(10, 3))
col=['g', 'b', 'r']
lbl=["p=0.1", "p=0.5", "p=0.8"]
for i in range(3):
    plt.subplot(1,3,i+1)
    plt.bar(range(pmf.shape[0]), pmf[:,i], color=col[i], alpha=0.7, label=lbl[i])
    plt.legend(loc="best")
    plt.xticks(range(10))
    plt.xlabel("trial number")
    plt.ylim(0, 0.4)
    if i!=0:
        plt.ylabel('')
        plt.yticks([])
    else:
        plt.ylabel('probability')
plt.show()

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...