기본 콘텐츠로 건너뛰기

라벨이 rank인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra] 고유값분해(Eigenvalue Decomposition)

고유값 분해(Eigen-Decomposition) 식 1과 같이 행렬 A가 가역행렬인 P과 대각행렬 D를 사용하여 유사변환이 가능하다면 그 행렬은 대각 가능(Diagonalizable) 하다고 합니다. 즉, 식 2와 같이 행렬 A의 고유값과 고유행렬에 대한 유사변환(Similarity transformation) 이 성립합니다. 예를 들어 2×2 정방행렬 A에 대해 고유값과 고유벡터들로 분해하는 다음과 같으며 고유값분해 (Eigenvalue Decomposition) 라고 합니다. \begin{align}\text{A}& =\text{PDP}^{-1}\\\tag{식 1}& P:\;\text{고유행렬}\\& D:\;\text{고유값으로 구성된 대각행렬}\end{align}   \begin{align} A=& \begin{bmatrix} a_{11}& a_{12}\\a_{21}& a_{22} \end{bmatrix}\\ \tag{식 2}\text{고유값}& =\begin{bmatrix} \lambda_1 & \lambda_2 \end{bmatrix}\\ \text{고유행렬}& =\begin{bmatrix} v_{11}& v_{12}\\v_{21}& v_{22} \end{bmatrix}\\ \begin{bmatrix} a_{11}& a_{12}\\a_{21}& a_{22} \end{bmatrix}&= \begin{bmatrix} v_{11}& v_{12}\\v_{21}& v_{22} \end{bmatrix}\begin{bmatrix} \lambda_1& 0\\0& \lambda_2 \end{bmatrix}\left(\begin{bmatrix} v_{11}& v_{12}\\v_{21}& v_{22} \end{bmatrix}\right)^{-1}\end{align} 예 1) 다음 행렬 A에 위 대각화를...

[Pandas]데이터 정리를 위한 메소드들

데이터 정리를 위한 메소드 다음은 일정기간 코스피 주가자료를 호출한 것입니다( yahoo finantical 자료 호출 참조 ). import numpy as np import pandas as pd import yfinance as yf st=pd.Timestamp(2024, 9, 1) et=pd.Timestamp(2024, 9,22) d=yf.download("^KS11", start=st, end=et) d.head(2) Open High Low Close Adj Close Volume Date 2024-09-19 2594.669922 2598.679932 2550.090088 2580.800049 2580.800049 385100 2024-09-20 2603.830078 2619.550049 2591.399902 2593.370117 2593.370117 496000 query() 메서드: dataframe의 열에 대해 블리언 식을 평가합니다. 다음은 종가가 시가에 비해 큰 날짜(인덱스)를 호출한 것입니다. d.query("Open < Close").index DatetimeIndex(['2024-09-09', '2024-09-12', '2024-09-13'], dtype='datetime64[ns]', name='Date', freq=None) query() 메서드의 인수는 st...

[Linear Algebra] 급수(Rank)

급수(Rank) 선형결합에 의해 생성되는 부분 공간 W의 차원 은 그 공간을 구성하는 기저(Basis) 벡터 의 수 입니다. 그 기저 벡터의 수를 급수(rank) 라고 합니다. 예 1) 다음 동차 방정식의 급수(rank)를 결정해 봅니다. 3x 1 + 6x 2 - x 3 + x 4 + 7x 5 = 0 x 1 - 2x 2 + 2x 3 + 3x 4 - x 5 = 0 2x 1 - x 2 + 5x 3 + 8x 4 - 4x 5 = 0 v1=np.array([3, 1, 2]) v2=np.array([6, -2, -1]) v3=np.array([-1, 2, 5]) v4=np.array([1, 3, 8]) v5=np.array([7, -1, -4]) c=np.zeros(3) aug=np.c_[v1, v2, v3, v4, v5, c] print(aug) [[ 3 6 -1 1 7 0] [ 1 -2 2 3 -1 0] [ 2 -1 5 8 -4 0]] print(np.array(Matrix(aug).rref()[0], dtype=float).round(2)) [[ 1. 0. 0. 0.45 2.03 0. ] [ 0. 1. 0. 0.18 -0.12 0. ] [ 0. 0. 1. 1.45 -1.64 0. ]] 위 결과에 의하면 피벗열은 0, 1, 2열이므로 이 열에 대응되는 열벡터들은 기저벡터가 됩니다. 그러므로 식 1과 같이 나타낼 수 있는 선형 시스템들은 모두 선형 독립 관계가 성립합니다. \begin{align}&\text{system 1}:\; \begin{bmatrix}3&6&-1\\1&-2&2\\2&-1&5\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}1\\3\\8\end{bmatrix}\\ ...