기본 콘텐츠로 건너뛰기

라벨이 극한인 게시물 표시

[matplotlib]quiver()함수

R caracas패키지를 이용한 극한, 미분, 적분 (R에서 sympy 사용하기)

symbol과 subs() 극한(limit)을 사용하여 자연상수 발견하기 미분과 적분 식으로 값 결정 caracas패키지를 이용한 극한, 미분, 적분 symbol과 subs() 문자 s1, s2 심벌(기호)로 선언하기 위해 def_sym() 를 사용합니다. 이 함수는 symbol() 함수와 같습니다. 그러나 그 사용은 약간의 차이가 있습니다. def_sym(s1, s2);s1 #s1, s2를 선언 [caracas]: s1 s2 [caracas]: s2 str(s1) List of 1 $ pyobj:s1 - attr(*, "class")= chr "caracas_symbol" s3 [caracas]: s1*s2 str(s3) #attr(*, "class")= chr "caracas_symbol" List of 1 $ pyobj:s1*s2 - attr(*, "class")= chr "caracas_symbol" subs() 함수는 기호를 다른 문자나 숫자로 대체합니다. subs(식 또는 심벌, 'caracas_symbol',대체할 문자 또는 숫자) 또는 subs('caracas_symbol',대체할 문자 또는 숫자) %>%: pipe operator는 R에서 동일한 데이터를 대상으로 연속으로 작업하게 해주는 연산자입니다. s4 %subs("s1", "u+v") %>% subs("s2", "u-v"); s4 [caracas]: (u - v)*(u + v) s5 [caracas]: 2 2 u - v tex(s5) [1] "u^{2} - v^{2}" as_expr(심벌 또는 기호로 구성된 함수): R의 expres...

Sympy를 사용한 극한(limit)

내용 limit() 함수 좌극한, 우극한 data4limit 극한 limit() 함수 limit()함수를 사용합니다. limit(식, 변수, 값) 이 함수의 각 인수는 다음과 같습니다. $$\underset{\text{변수} \to \text{값}}{\quad \text{limit} \quad }\text{식}$$ import numpy as np import pandas as pd from sympy import * 예 함수 f(x)=sin(x)와 $g(x)=\frac{\sin(x)}{x}$의 0으로의 극한을 계산합니다. x=symbols('x') f=sin(x) limit(f, x, 0) 0 g=sin(x)/x limit(g, x, 0 ) 1 극한이 정해진 수에 접근하는 경우 .subs() 메서드를 적용할 수 있습니다. ex=x**2/exp(x) limit(ex, x, 1000) $\quad\color{navy}{\scriptstyle \frac{1000000}{e^{1000}}}$ ex.subs(x, 1000) $\quad\color{navy}{\scriptstyle \frac{1000000}{e^{1000}}}$ 그러나 변수가 무한대로 접근하는 경우 .subs()를 적용할 수 없습니다. limit(ex, x, oo) 0 ex.subs(x, oo) NaN sympy의 Limit 클래스는전달되는 식의 계산이 평가되지 않은 상태로 반환됩니다. Limit((cos(x)-1)/x, x, 0) $\quad\color{navy}{\scriptstyle \lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)} - 1}{x}\right)}$ 위 표현식을 평가하기 위해 .doit() 메서드가 적용됩니다. Limit((cos(x)-1)/x, x, 0).doit() 0 limit((cos(x)-1)/x, x, 0) 0 좌극한, 우극한 함...