내용 적분의 일반 규칙 함수들의 합에 대한 적분 함수의 상수항 특별한 함수의 적분 특별한 함수의 적분공식 삼각함수의 적분 편적분 적분 규칙 적분의 일반 규칙 함수 y에 대한 미분은 $\displaystyle \frac{dy}{dx}$를 계산하는 것입니다. 많은 수학적 계산과 같이 미분 과정 역시 역산될 수 있습니다. 예를 들어 $\displaystyle y = x^4$의 미분은 $\displaystyle \frac{dy}{dx} = 4x^3$이 되며 그 과정을 반대로 실행하면 원 함수인 $\displaystyle y = x^4$이 되어야 합니다. 그러나 미분계수가 $\displaystyle 4x^3$이 되는 함수는 위에서 언급한 함수 외에 $\displaystyle x^4 + C$와 같이 상수를 첨가된 다양한 함수의 미분 결과일 수 있습니다. 상수는 미분의 결과에 영향을 주지 않기 때문입니다. 이러한 점을 적분에 고려하여 미분의 역과정인 적분 결과에 상수 C를 더해 줍니다. $$\begin{align} \frac{dy}{dx}&=x^{n-1}\\ \int nx^{n-1}\; dx&= x^n+C\\ & C: 상수 \end{align}$$ 식 1과 같이 위의 관계에서 독립변수 x의 거듭제곱에 대한 미분과 적분의 일정한 관계가 성립됩니다. 적분일반규칙 $$\begin{align}\tag{1} \frac{dy}{dx}&=x^{n}\\ \int nx^{n}\; dx&= \frac{1}{n+1}x^{n+1}+C\\ & C: 상수,\; n \neq -1 \end{align}$$ 적분 계산은 sympy의 integrate() 함수를 적용합니다. 이 함수의 결과에는 상수가 고려되지 않습니다. 그러나 적분 결과로 대상인 함수에서의 상수의 존재 여부를 결정할 수 없기 때문에 상수가 존재한다고 간주해야 합니다. 그러므로 intergrate()함수에 의한 계...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.