기본 콘텐츠로 건너뛰기

라벨이 inverse_fraction인 게시물 표시

[matplotlib]quiver()함수

역함수의 미분

역함수의 미분 함수 y = 3x의 종속 변수 y는 독립 변수 x에 의존합니다. 두 변수의 관계가 역전되는 경우는 다음과 같이 나타낼 수 있습니다. $\displaystyle x = \frac{y}{3}$ 이러한 형태를 역함수(inverse function) 이라고 합니다. 함수의 미분은 $\displaystyle \frac{dy}{dx}$가 되지만 역함수의 미분은 $\displaystyle \frac{dx}{dy}$가 됩니다. 이들의 곱은 1이 됩니다. 이 과정은 다음과 나타낼 수 있습니다. $$\begin{align} y = 3x & \rightarrow \frac{dy}{dx} = 3\\ x = \frac{y}{3} &\rightarrow \frac{dx}{dy} = \frac{1}{3}\\ \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} &\rightarrow \frac{dy}{dx}\cdot \frac{dx}{dy} = 1 \end{align}$$ 위 과정은 다음과 같이 코드화 할 수 있습니다. import numpy as np import pandas as pd from sympy import * import matplotlib.pyplot as plt x, y=symbols('x y') eq=y-3*x eq −3x+y y1=solve(eq, y) y1 [3*x] y1[0].diff(x) 3 x1=solve(eq, x) x1 [y/3] x1[0].diff(y) $\quad \small \color{blue}{\frac{1}{3}}$ y1[0].diff(x)*x1[0].diff(y) 1 식 $y = 4x^2$에 대해 역함수의 미분을 시행해 봅니다. x, y=symbols("x, y", real=True) eq=4*x**2-y eq 4x 2 -2 y1=solve(eq, y) y1 [4*x**2] dy=[i.diff(x) for ...