내용 시퀀스 데이터(Sequential Data) 전통적 신경망의 한계 RNN Long Short Term Memory (LSTMs) 적용 Sequential Data에 LSTM 적용 시퀀스 데이터(Sequential Data) 시퀀스 데이터는 데이터가 나열되어 있는 순서에 중요한 의미가 부여됩니다. 몇 가지 일반적인 유형의 순차 데이터를 예제와 함께 살펴보겠습니다. Language data 또는 a sentence 예를 들어 “My name is Ahmad”의 문장을 “Name is my Ahmad”와 같이 단어의 순서를 바꾼다면 성립하지 않습니다. 즉, 단어들의 순서가 문장의 의미를 전달하는 데 중요한 요소이기 때문에 순차 데이터입니다. Time Series Data 예를 들어, 회사 A의 연간 주식 시장 가격과 같은 종류의 데이터는 연도별로 확인하고 순서와 추세를 찾아야 합니다. 연도의 순서는 변경할 수 없습니다. Biological Data 예를 들어, DNA 서열은 순서대로 유지되어야 합니다. 관찰하면 시퀀스 데이터는 우리 주변 어디에나 있습니다. 예를 들어 오디오를 음파, 텍스트 데이터 등의 시퀀스로 볼 수 있습니다. 이것들은 순서를 유지해야 하는 시퀀스 데이터의 몇 가지 일반적인 예입니다. 전통적 신경망의 한계 다음의 단순한 신경망을 생각해 봅니다. plt.figure(dpi=100) font1={'family':'nanumgothic', 'size':12, 'weight':'bold'} plt.scatter([1, 2], [1, 1], s=200) plt.annotate("", (1,1), (2,1),arrowprops=dict(color="blue", arrowstyle="-")) plt.text(1, 0.99, 'Input Lay...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.