미분의 기하학적 의미 미분 계수는 변화율을 의미하는 것으로서 그림 1과 같이 기하학적으로 나타내면 보다 명확해 집니다. 그림 1. y=x 2 +a. 그림 1에서 곡선 PQR은 X, Y의 축에 대해 작성된 곡선의 일부입니다. 이 곡선에서 점의 가로 좌표가 x이고 세로 좌표가 y인 점 Q가 x가 변할 때 y가 어떻게 변하는지 관찰할 수 있습니다. x가 작은 증분 dx 만큼 증가하면 오른쪽에서 y도 작은 증분 dy 만큼 증가하는 것을 관찰할 수 있습니다. 이것은 이 곡선이 상승 곡선이기 때문에 일어나는 현상입니다. 이 상태에서 dy와 dx의 비율은 곡선이 두 점 Q와 T 사이에서 위로 기울어지는 정도를 측정 한 것입니다. 사실 그림에서 Q와 T 사이의 기울기는 일정하지 않습니다. 즉, Q, T 사이에는 직선이 아닌 곡선이므로 다양한 기울기들 존재하기 때문입니다. 결과적으로 일정한 간격인 dy, dx에 의해 계산된 비율은 각 지점의 변화율에 대한 평균값입니다. 그러나 Q와 T가 직선이라고 간주할 수 있을 만큼 곡선의 작은 부분이라면 비율 $\displaystyle \frac{dy}{dx}$은 QT에서의 곡선의 기울기라고 말할 수 있습니다. QT가 매우 작다면 점 Q에서의 곡선의 기울기는 그 구간의 기울기 $\displaystyle \frac{dy}{dx}$에 근접하게 되고 그 구간이 지속적으로 작아지면 결국 이 비율은 점 Q에서의 기울기로 간주할 수 있습니다. 이것을 접선의 기울기 (slope of tangent) 라고 합니다. 그림 2는 곡선의 기울기와 미분계수의 관계를 나타낸 것으로 각각은 다음과 같습니다. 그림 2의 a는 곡선의 작은 부분의 기울기가 45°보다 큰 경우로서 접선의 기울기 $\frac{dy}{dx} \gt 1$ 그림 2의 b과 같이 특정 지점에서의 기울기가 45°라면 $\displaystyle \frac{dy}{dx}=1$ 그림 2의 c와 같이 특정 지점에서의 기울기가 45°보다 작으면 $\displayst...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.