기본 콘텐츠로 건너뛰기

라벨이 reshape인 게시물 표시

[matplotlib]quiver()함수

[numpy] 배열의 차원 수정

배열의 차원 수정 배열의 차원을 수정하기 위해 reshape() 함수 또는 메서드 flatten(), ravel() 메서드, newaxis 의 속성을 사용할 수 있습니다. np.reshape(객체, shape), 객체.reshape(shape) 객체를 지정한 배열의 모양(shape)으로 변환 2차원 배열의 경우 인수 중 하나를 고정하고 다른 인수로 -1을 전달할 경우 자동으로 배분 import numpy as np x=np.random.randint(20, size=(3,4)) x array([[16, 5, 11, 6], [19, 19, 17, 14], [16, 16, 2, 4]]) print(x.reshape((2,6))) [[ 6 3 8 8 13 5]    [ 7 9 9 0 7 8]] print(np.reshape(x, (-1, 6))) [[16 5 11 6 19 19] [17 14 16 16 2 4]] print(x.reshape((6,-1))) [[16 5] [11 6] [19 19] [17 14] [16 16] [ 2 4]] print(x.reshape((4,3))) [[16 5 11] [ 6 19 19] [17 14 16] [16 2 4]] 다음 flatten() 과 ravel() 메서드는 다차원 배열을 1차원으로 전환합니다. x.flatten() array([ 6, 3, 8, 8, 13, 5, 7, 9, 9, 0, 7, 8]) x.ravel() array([ 6, 3, 8, 8, 13, 5, 7, 9, 9, 0, 7, 8]) 배열에 포함된 부분요소 또는 그 배열 자체의 차원을 증가시키기 위해서는 np.newaxis 속성을 적용합니다. 이 속성은 가장 근접한 차원에 새로운 축을 첨가 합니다. 객체[part 또는 all, np.newaxis] y=np...

R 데이터의 집계 및 재구성

내용 전치(transpose) 데이터의 집계 reshape 패키지 melting casting 데이터의 집계 및 재구성(aggregation and restructuring) R은 데이터를 집계하고 재구성하기 위한 여러 가지 강력한 방법을 제공합니다. 데이터를 집계할 때 관찰 그룹을 해당 관찰을 기반으로 하는 요약 통계로 바꿉니다. 데이터를 재구성할 때 데이터가 구성되는 방식을 결정하는 구조(행 및 열)를 변경합니다. 이 섹션에서는 이러한 작업을 수행하는 다양한 방법에 대해 설명합니다. 다음 두 하위 섹션에서는 R의 기본 설치에 포함된 mtcars 데이터 프레임을 사용할 것입니다. Motor Trend Magazine(1974)에서 추출한 이 데이터 세트는 설계 및 성능 특성(실린더 수, 배기량, 마력, mpg 등) 34대용. 데이터세트에 대한 자세한 내용은 help(mtcars)를 참조하세요. 전치(transpose) 전치는 데이터의 구조 즉, 행과 열을 교환하는 것입니다. 함수 t() 를 사용합니다. cars mpg cyl disp hp Mazda RX4 21.0 6 160 110 Mazda RX4 Wag 21.0 6 160 110 Datsun 710 22.8 4 108 93 Hornet 4 Drive 21.4 6 258 110 Hornet Sportabout 18.7 8 360 175 t(cars) MazdaRX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout mpg 21 21 22.8 21.4 18.7 cyl 6 6 ...

torch

내용 텐서란? 주요속성 Numpy에서 텐서 조작 차원의 변경 데이터 배치의 개념 (The notion of data batches) import tensorflow as tf from tensorflow import keras import numpy as np import pandas as pd from scipy import stats from sklearn import preprocessing import matplotlib.pyplot as plt 텐서(Tensor) 텐서란? 텐서는 숫자로 구성된 데이터의 컨테이너입니다. 즉, 숫자를 담는 그릇입니다. 가장 많이 접할 수 있는 2D 텐서인 행렬이 텐서의 예입니다. 결과적으로 텐서는 행렬을 임의의 수의 차원으로 일반화한 것으로 텐서의 맥락에서 차원(dimension)은 종종 축(axis)이라고 할 수 있습니다. tensorflow에서 텐서는 tf.constant() 함수에 의해 생성됩니다. 생성된 텐서의 값은 동일한 객체에서 변경, 수정 될 수 없습니다. 생성된 텐서의 타입은 tf.dtypes.DType 에서 확인 할 수 있습니다. 스칼라는 0차원 텐서이므로 축은 없습니다.(rank 0) 벡터는 1차원 텐서로서 1개의 축을 가집니다.(rank 1) 행렬은 2차원 텐서이며 2개 축을 가집니다.(rank 2) 3차원 텐서는 3개의 축을 가집니다.(rank 3) 계속 확장할 수 있습니다. rank0=tf.constant(4) rank0 <tf.Tensor: shape=(), dtype=int32, numpy=4 > rank1=tf.constant([2,3]) rank1 <tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 3], dtype=int32) > rank2=tf.constant([[1,2],[3,4],[5,6]]) rank2 <tf.Tensor: shape=(3, 2), dtyp...