기본 콘텐츠로 건너뛰기

라벨이 hue인 게시물 표시

[matplotlib]quiver()함수

[seaborn] 데이터분포의 시각화 1(histplot & displot)

데이터분포의 시각화(histplot & displot) 데이터 분포의 이해는 다양한 통계 분석의 기반이 됩니다. seaborn의 figure-level 함수인 displot(), jointplot(), pairplot()와 axes-level 함수인 hisplot(), kedplot(), ecdplot(), rugplot()으로 분포를 시각화 할 수 있습니다 Figure-level과 Axes-level 함수 그리고 히스토그램 참조). 분포의 시각화에 가장 일반적인 접근은 히스토그램(histogram)입니다. 히스토그램은 일정한 구간(bin)으로 그룹화한 변수를 기준으로 각 구간의 빈도수 또는 밀도를 대응시킨 bar plot입니다. 이 기사에서는 각 빈도에 빈도수(Count)를 나타내기 위해 histplot() 과 displot() 으로 작성에 대해 소개합니다. import numpy as np from sklearn.datasets import make_blobs import pandas as pd from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt plt.rcParams['font.family'] ='NanumGothic' plt.rcParams['axes.unicode_minus'] =False import seaborn as sns import yfinance as yf 히스토그램을 작성하기 위한 데이터로 코스피 지수의 일일자료(^KS11)를 모듈 yfiance를 사용하여 호출합니다. 그 자료에서 에 대해 일일변화율(시가에 대한 종가의 변화율)과 일간 거래량(Volume)의 변화율을 목록화하여 첨가하여 다음코드의 결과인 kos1df 자료를 생성합니다. st=pd.Timestamp(2023, 10, 17) et=pd.Timestamp(2024, 10, 17) kos=yf.download("^K...

[seaborn] 변수들의 관계 시각화(산점도와 선그래프)

변수들의 관계 시각화(산점도와 선그래프) 산점도 선그래프 seaborn의 함수중 그림 수준(figure-level) 함수인 relplot()은 지정한 데이터들의 관계성을 나타냅니다. 이러한 특성은 데이터들 사이에 관계를 나타내는 과정인 통계를 시각적으로 나타내는데 적절합니다. 이 그림수준 함수인 replot() 함수는 축수준(axes-level) 함수인 scatterplot() 또는 lineplot()의 모두 작성할 수 있습니다. relplot(kind="scatter") = scatterplot() relplot(kind="line") = lineplot() 산점도(scatter) 데이터 tips는 연속변수와 목록변수가 모두 포함된 데이터셋입니다. 연속변수들 사이의 산점도 작성은 인수인 x, y에 각 변수를 지정하는 것으로 생성됩니다. import numpy as np import pandas as pd import yfinance as yf import matplotlib.pyplot as plt import seaborn as sns tips=sns.load_dataset('tips') tips.head(3) total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male ...