독립사건(independent event) 관련내용 확률(probability) 교집합이 공집합인 사건들은 독립사건(independent event) 또는 상호 배타적 결과들(disjoint or mutually exclusive outcomes) 이 됩니다. 예를 들어 하나의 주사위를 시행하는 경우 주사위 눈의 갯수 1과 2가 동시에 일어날 수 없으므로 독립 사건이 됩니다. 한편 1과 홀수가 나올 확률은 1이 이미 홀수이므로 동시에 발생할 수 있습니다. 그러므로 이 사건은 상호 배타적 결과들이 아닙니다. 독립사건은 다른 사건들 사이에 영향을 줄 수 없기 때문에 여러 독립 사건들의 합은 각 사건의 합으로 결정할 수 있습니다. 예를 들어 1개의 주사위 시행에서 1 또는 2가 나올 사건의 확률은 독립이므로 각각의 확률의 합이 됩니다(식 1). \begin{align}P(X=1\;\text{or}\;2)&=P(X=1)+P(X+2)\\&=\frac{1}{6}+\frac{1}{6}\\&=\frac{1}{3} \end{align} (식 1) 위와 달리 어떤 사건이 동시에 일어날 수 있는 사건이 존재하는 경우 즉, 사건 A, B가 독립사건이 아닌 경우는 두 사건에서 공통으로 일어나는 경우는 제외되어야 합니다. 예를 들어 주사위 시행에서 1 또는 홀수가 나올수 있는 확률에서 홀수 사건 중에 1이 이미 포함되어 있습니다. 그러므로 식 2와 같이 1이 나올 확률을 제외하여야 합니다. \begin{align}P(X=1)=\frac{1}{6}&\quad P(X=\text{홀수})=\frac{1}{2}\\P(X=1\;\text{or}\;X=\text{홀수})&=\frac{1}{6}+\frac{1}{2}-\frac{1}{6}\\&=\frac{1}{2} \end{align} (식 2) case=range(1, 7) n=0 for i in case: if (i==1) or (i %2 ==1): ...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.