기본 콘텐츠로 건너뛰기

라벨이 inv인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra] 역행렬(Inverse matrix)

역행렬(Inverse matrix) 관련된 내용 기약행 사다리꼴 형태 (Reduced row echelon form, rref) 행렬식 식 1과 같이 두 행렬의 행렬곱 결과가 항등행렬 을 생성한다면 행렬 B는 행렬 A의 역행렬(inverse matrix) 이 되며 A -1 로 나타냅니다. 물론 역도 성립합니다. A · B = I → B = A -1 (식 1) 역행렬을 가지는 행렬을 가역행렬(reversible matrix) 이라고 하며 np.linalg.inv() 함수에 의해 계산할 수 있습니다. a=np.array([[1,3,-5], [-2,7,8], [4,0,6]]) print(a) [[ 1 3 -5] [-2 7 8] [ 4 0 6]] a_inv=la.inv(a) # a의 역행렬 print(a_inv.round(2)) [[ 0.134 -0.057 0.188] [ 0.14 0.083 0.006] [-0.089 0.038 0.041]] 위 코드의 결과 a_inv의 각 요소를 반올림을 실행하기 위해 .round() 메소드를 적용하였습니다. aa_inv=a.dot(a_inv) print(aa_inv.round(2)) [[ 1. 0. -0.] [ 0. 1. 0.] [ 0. -0. 1.]] 이 역행렬은 식 2와 같은 연립방정식의 해를 계산하기 위해 사용됩니다. $$\begin{aligned}x+y+2z&=9\\2x+4y-3z&=1\\3x+6y-5z&=0 \end{aligned} \Rightarrow \begin{bmatrix}1&1&2\\2&4&-3\\3&6&-5\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix} 9\\1\\0\end{bmatrix}$$ (식 2) 식 2의 우항은 식 3과 같이 방정식들...

[Linear Algebra] 대칭행렬(Symmetric matrix)

대칭행렬(Symmetric matrix) 식 1와 같이 행렬의 대각 요소들을 기준으로 양쪽의 요소가 동일한 정방 행렬을 의미합니다. \begin{bmatrix}{\color{red}a_{11}} & b & c\\ b & {\color{red}a_{22}} & d\\c & d & {\color{red}a_{33}}\end{bmatrix} (식 1) 대칭 행렬은 다음 코드와 같이 삼각 행렬과 그 전치행렬과의 합으로 생성할 수 있습니다. np.random.seed(4) x=np.random.randint(-10, 10, (3,3)) y=np.random.randint(-10, 10, (3,3)) A=np.triu(x)+np.triu(x).T print(A) [[ 8 -5 -9] [-5 -4 8] [-9 8 6]] B=np.tril(y)+np.tril(y).T print(B) [[ -4 2 -7] [ 2 -8 -10] [ -7 -10 -2]] 대칭행렬의 특성 대칭 행렬 A, B과 스칼라 k 사이에 다음의 관계가 성립합니다. A = A T , 즉, 대칭 행렬과 그 행렬의 전치 행렬은 같습니다. 두 대칭행렬 A ± B는 대칭 행렬입니다. 대칭행렬의 스칼라 곱 역시 대칭 행렬입니다. (AB) T = B T A T print(A==A.T) [[ True True True] [ True True True] [ True True True]] print(A+B) [[ 4 -3 -16] [ -3 -12 -2] [-16 -2 4]] print(3*A) [[ 24 -15 -27] [-15 -12 24] [-27 24 18]] 일반적으로 대칭 행렬인 A와 B의 곱은 대칭 행렬이 되지 않습니다. 그러나 두 대칭 행렬의 곱의 교환 법칙이 성립하는 경우 즉, AB = BA인 경우 다음 식이 성립하며 그 곱 역시 대칭행렬이 됩니다(...