기본 콘텐츠로 건너뛰기

[data analysis]로그-노말 분포(Log-normal distribution)

[Linear Algebra] 역행렬(Inverse matrix)

역행렬(Inverse matrix)

관련된 내용

식 1과 같이 두 행렬의 행렬곱 결과가 항등행렬을 생성한다면 행렬 B는 행렬 A의 역행렬(inverse matrix)이 되며 A-1로 나타냅니다. 물론 역도 성립합니다.

A · B = I → B = A-1 (식 1)

역행렬을 가지는 행렬을 가역행렬(reversible matrix)이라고 하며 np.linalg.inv() 함수에 의해 계산할 수 있습니다.

a=np.array([[1,3,-5], [-2,7,8], [4,0,6]])
print(a)
[[ 1  3 -5]
[-2  7  8]
[ 4  0  6]]
a_inv=la.inv(a) # a의 역행렬   
print(a_inv.round(2))
[[ 0.134 -0.057  0.188]
 [ 0.14   0.083  0.006]
 [-0.089  0.038  0.041]]

위 코드의 결과 a_inv의 각 요소를 반올림을 실행하기 위해 .round() 메소드를 적용하였습니다.

aa_inv=a.dot(a_inv)
print(aa_inv.round(2))
[[ 1.  0. -0.]
 [ 0.  1.  0.]
 [ 0. -0.  1.]]

이 역행렬은 식 2와 같은 연립방정식의 해를 계산하기 위해 사용됩니다.

$$\begin{aligned}x+y+2z&=9\\2x+4y-3z&=1\\3x+6y-5z&=0 \end{aligned} \Rightarrow \begin{bmatrix}1&1&2\\2&4&-3\\3&6&-5\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix} 9\\1\\0\end{bmatrix}$$(식 2)

식 2의 우항은 식 3과 같이 방정식들의 계수행렬과 변수벡터 그리고 각 식의 결과인 상수벡터로 분리하여 나타낼 수 있습니다.

$$A=\begin{bmatrix} 1& 1& 2\\2& 4& -3\\3& 6& -5\end{bmatrix}, \quad b=\begin{bmatrix} x\\y\\z\end{bmatrix}, \quad c=\begin{bmatrix} 9\\1\\0\end{bmatrix}$$(식 3)

즉, 위 연립방정식은 미지수 벡터(b)와 각 미지수에 대응하는 계수 행렬(A)사이의 행렬곱의 결과인 상수벡터(c)로 구성되어 있습니다. 계수행렬을 표준행렬이라고 합니다.

계수행렬의 역행렬이 존재한다면 식 4에서 나타낸 과정에 의해 각 미지수의 해를 계산할 수 있습니다.

A·b = c(식 4)
A-1·A·b = A-1·c
b = A-1·c

다음 코드는 해를 결정하기 위해 식 4에서 제시한 절차에 따라 작성한 것입니다.

A=np.array([[1,1,2], [2,4,-3], [3,6,-5]]) 
c=np.array([[9],[1],[0]]) 
A_inv=la.inv(A) 
re=A_inv.dot(c) 
print(re)
[[1.]
 [2.]
 [3.]]

표준행렬(계수 행렬)이 가역적일 때 위 코드들은 numpy.linalg 모듈의 함수 solve(A, b)으로 대신할 수 있습니다.

print(la.solve(A, c))
[[1.]
 [2.]
 [3.]]

위 방정식들의 해는 유일합니다. 즉, 세 개의 식들은 하나의 좌표에서 만납니다. 이러한 상태를 선형 독립(linear independence)이라고 합니다. 이 결과와는 다르게 방정식들이 여러 좌표에서 교차되는 상태를 선형 종속(linear dependence)이라고 합니다.

위에서 소개한 미지수의 해를 결정하는 과정은 표준 행렬이 정방 행렬이고 역행렬이 존재한다는 가정에 의해 진행되며 위 경우 각 미지수의 해는 하나만이 존재합니다. 그러나 이러한 조건을 만족하지 않는 표준 행렬일 경우 미지수의 수와 방정식의 수가 일치하지 않습니다. 즉, 표준 행렬은 정방 행렬이 아닙니다. 이러한 경우 역행렬은 위의 과정으로 산출될 수 없습니다. 대신에 가우스 조르당 소거법(Gaussian Jordan elimination method)을 사용하여 역행렬을 계산할 수 있습니다. 이 소거법은 사다리꼴 형태의 행렬(row echelon form)을 반환합니다.

댓글

이 블로그의 인기 게시물

유사변환과 대각화

내용 유사변환 유사행렬의 특성 대각화(Diagonalization) 유사변환(Similarity transformation) 유사변환 n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사하다고 하며 이 변환을 유사 변환 (similarity transformation)이라고 합니다. $$\begin{equation}\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B \end{equation}$$ 식 1의 유사 변환은 다음과 같이 고유값을 적용하여 특성 방정식 형태로 정리할 수 있습니다. $$\begin{align} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align}$$ 위 식의 행렬식은 다음과 같이 정리됩니다. $$\begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \t

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b