기본 콘텐츠로 건너뛰기

라벨이 limit인 게시물 표시

통계관련 함수와 메서드 사전

A B C d E F G H I K L M N O P Q R S T U V W Z A statsmodels.ap.stats.anova_lm(x) statsmodels.formula.api.ols 에 의해 생성되는 모형 즉, 클래스 인스턴스(x)를 인수로 받아 anova를 실행합니다. np.argsort(x, axis=-1, kind=None) 객체 x를 정렬할 경우 각 값에 대응하는 인덱스를 반환합니다. Axis는 기준 축을 지정하기 위한 매개변수로서 정렬의 방향을 조정할 수 있음(-1은 기본값으로 마지막 축) pandas.Series.autocorr(lag=1) lag에 전달한 지연수에 따른 값들 사이의 자기상관을 계산 B scipy.stats.bernoulli(x, p) 베르누이분포에 관련된 통계량을 계산하기 위한 클래스를 생성합니다. x: 랜덤변수 p: 단일 시행에서의 확률 scipy.stats.binom(x, n, p) 이항분포에 관련된 통계량을 계산하기 위한 클래스를 생성합니다. x: 랜덤변수 n: 총 시행횟수 p: 단일 시행에서의 확률 C scipy.stats.chi2.pdf(x, df, loc=0, scale=1) 카이제곱분포의 확률밀도함수를 계산 $$f(x, k) =\frac{1}{2^{\frac{k}{2}−1}Γ(\frac{k}{2})}x^{k−1}\exp\left(−\frac{x^2}{2}\right)$$ x: 확률변수 df: 자유도 pd.concat(objs, axis=0, join=’outer’, …) 두 개이상의 객체를 결합한 새로운 객체를 반환. objs: Series, DataFrame 객체. Axis=0은 행단위 즉, 열 방향으로 결합, Axis=1은 열단위 즉, 행 방향으

R caracas패키지를 이용한 극한, 미분, 적분 (R에서 sympy 사용하기)

symbol과 subs() 극한(limit)을 사용하여 자연상수 발견하기 미분과 적분 식으로 값 결정 caracas패키지를 이용한 극한, 미분, 적분 symbol과 subs() 문자 s1, s2 심벌(기호)로 선언하기 위해 def_sym() 를 사용합니다. 이 함수는 symbol() 함수와 같습니다. 그러나 그 사용은 약간의 차이가 있습니다. def_sym(s1, s2);s1 #s1, s2를 선언 [caracas]: s1 s2 [caracas]: s2 str(s1) List of 1 $ pyobj:s1 - attr(*, "class")= chr "caracas_symbol" s3<-s1*s2; s3 #기호 s1, s2의 연산에 의해 선언된 기호 [caracas]: s1*s2 str(s3) #attr(*, "class")= chr "caracas_symbol" List of 1 $ pyobj:s1*s2 - attr(*, "class")= chr "caracas_symbol" subs() 함수는 기호를 다른 문자나 숫자로 대체합니다. subs(식 또는 심벌, 'caracas_symbol',대체할 문자 또는 숫자) 또는 subs('caracas_symbol',대체할 문자 또는 숫자) %>%: pipe operator는 R에서 동일한 데이터를 대상으로 연속으로 작업하게 해주는 연산자입니다. s4<-s3 %>%subs("s1", "u+v") %>% subs("s2", "u-v"); s4 [caracas]: (u - v)*(u + v) s5<-expand(s4); s5 [caracas]: 2 2 u - v tex(s5)

극한의 특성과 계산

극한의 특성 $\lim_{x \to a}f(x), \;  \lim_{x \to a}g(x)$ 그리고 상수(constant) c사이에 다음 관계들이 성립합니다. import numpy as np import pandas as pd from sympy import * import matplotlib.pyplot as plt x=symbols("x") f=x**2+3*x g=x**3+4*x+5 c=3 a=2 f $\quad \color{blue}{x^{2} + 3 x}$ g $\quad \color{blue}{x^{3} + 4 x + 5}$ 1) $\displaystyle \lim_{x \to a}cf(x)=c\lim_{x \to a}f(x)$ limit(c*f, x, a) 30 c*limit(f, x, a) 30 2) $\displaystyle \lim_{x \to a}[f(x) \pm g(x)]=\lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$ limit(f+g, x, a) 31 limit(f, x, a)+limit(g, x, a) 31 3) $\displaystyle \lim_{x \to a}[f(x) g(x)]=\lim_{x \to a}f(x)  \lim_{x \to a}g(x)$ limit(f*g, x, a) 210 limit(f, x, a)*limit(g, x, a) 210 4) $\displaystyle \lim_{x \to a}\frac{f(x)}{g(x)}=\frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}, \quad \lim_{x \to a}g(x)\neq 0$ limit(f/g, x, a) $\quad \color{blue}{\displaystyle \frac{1}{21}}$ limit(f, x, a)/limit(g, x, a) $\quad \color{blue}{\displaystyle \frac{1}{21}}$ 5) $\lim

극한(Limit)의 개념

내용 접선과 외선 극한(limit) 1. 접선과 외선 한 점 x에서의 함수 f(x)의 접선 (tangent line)은 그 점에서 함수의 그래프를 스쳐지나가는 직선으로 그 점과 평행입니다. 그림 1. 위 그림에서 직선 y는 곡선 f(x)위의 점 A(0.3, f(0.3))에 대한 접선입니다. 이 접선은 곡선의 다른 점 B를 통과합니다. 이와같이 어떤 점의 접선이 동일한 함수의 다른 점과 교점을 이루는 선을 외선 (scant line)이라고 합니다. 위의 경우 직선 y의 식은 접점(점A)과 외선을 이루는 점B를 알 수 있으므로 쉽게 계산할 수 있습니다. 예 1)   x=1에서 $f(x)=15-2x^2$의 접선? 그림 2. 위 그림에서 f(x) 위의 접점 A를 지나는 접선 a의 식을 계산하기 위해서는 a를 지나는 다른 점을 알거나 그 직선의 기울기를 알아야 합니다. 위 그림에서는 두 가지 모두 미지수입니다. 그러나 함수 f(x)위의 두 점 A와 B를 지나는 직선을 계산할 수 있습니다. 이 직선을 이용하여 접선을 추정할 수 있습니다. 위 그림에서 b의 기울기는 다음과 같이 계산할 수 있습니다. $$\frac{f(0.5)-f(1.32)}{0.5-1.32}$$ import numpy as np import pandas as pd from sympy import * x=symbols("x") f=5-2*x**2 s1=(f.subs(x,0.5)-f.subs(x, 1.32))/(0.5-1.32) N(s1, 2) −3.6 그림 2의 점 B가 점 A쪽으로 근접할수록 직선 b는 직선 a와 근사해질 것입니다.(그림 3) A로 수렴하는 여러 점들에 대한 기울기를 계산하면 다음과 같습니다. x_p=np.linspace(0.51, 1, 5) np.around(x_p, 2) array([0.51, 0.63, 0.76, 0.88, 1. ]) slope=[] bias=[] for j, i in enumerate(