기본 콘텐츠로 건너뛰기

라벨이 transforms인 게시물 표시

[matplotlib]quiver()함수

torchvision: 데이터 준비

내용 dataset transforms.Totensor 주가자료의 변환 transforms.Compose와 transforms.Normalize torchvision: 데이터 준비 dataset CIFAR-10은 torchvision에 포함된 데이터 셋으로 이 패키지의 서브모듈인 datasets을 사용하여 호출합니다. CIFAR-10 dataset: 10개 클래스 중 1개에 해당하는 정수로 레이블이 지정된 60,000개의 작은 32 × 32 컬러(RGB) 이미지로 구성 비행기(0), 자동차(1), 새(2), 고양이(3), 사슴(4), 개(5), 개구리(6), 말(7), 배(8), 트럭(9) import numpy as np import matplotlib.pyplot as plt from torchvision import datasets from torchvision import transforms data_path='/~/pytorch/' cifar=datasets.CIFAR10(data_path, train=True, download=True) cifar_val=datasets.CIFAR10(data_path, train=False, download=True) datastes.CIFAR10() 함수에 제공하는 첫 번째 인수는 데이터를 다운로드할 위치입니다. 두 번째는 훈련 세트 또는 검증 세트에 관심이 있는지 여부를 지정합니다. 세 번째는 첫 번째 인수에 지정된 위치에서 데이터를 찾을 수 없는 경우 PyTorch가 데이터를 다운로드하도록 허용할지 여부를 나타냅니다. CIFAR10과 마찬가지로 데이터 세트 하위 모듈은 MNIST, Fashion-MNIST, CIFAR-100, SVHN, Coco 및 Omniglot과 같은 가장 인기 있는 컴퓨터 비전 데이터 세트에 대한 사전 준비된 액세스를 제공합니다. 각 경우에 데이터세트는 torch.utils.data.Dataset 의 하...