기본 콘텐츠로 건너뛰기

라벨이 모수적방법인 게시물 표시

[matplotlib]quiver()함수

[data analysis] 회귀분석(Regression analysis)의 정의와 가정

회귀분석(Regression analysis)의 정의와 가정 회귀분석(Regression analysis) 은 변수들간의 관계에 대한 모형을 설정하고 그 모형을 통해 새로운 값을 추정하는 통계적 방법입니다. 그림 1은 일정한 높이(x)에 대응되는 힘(y)에 대한 그래프로서 x가 증가할수록 y가 증가하는 정확한 정비례 관계를 보여줍니다. 이 관계는 일반적인 물리법칙을 적용한 것으로 높이에 따라 작용되는 힘을 정확하게 결정할 수 있습니다. 그림 1. 높이에 따른 힘의 변화. h=np.linspace(0, 5) f=0.1*9.8*h plt.figure(figsize=(4,3)) plt.plot(h, f, color="g", label="F=mgh\nm:0.1 kg") plt.xlabel("h(m)") plt.ylabel("F(N)") plt.legend(loc="best") plt.show() 그림 2는 x가 증가하면서 y의 증가를 보이지만 그림 1과 같이 완전한 선으로 미지의 값에 대한 적확한 예측을 하는 것은 어렵습니다. 그림에서 나타낸 것과 같이 각 x 점에 대응하는 y 값들의 관계식은 다양하게 존재할 것입니다. 이 상황에서 새로운 x에 대한 y를 추정하기 위한 가장 적합한 식(회귀모델)을 추론하는 것이 회귀분석의 최종적인 목적입니다. 이와 같이 두 변수 사이의 관계 모형을 확정하기 어려운 경우에서의 모델 구축은 확률적으로 이루어 집니다. 다시말하면 회귀분석은 확률론적 시각으로 데이터의 특성을 이해하고 미지의 값을 추론하는 주요한 통계적 방법입니다. 그림 2 X에 대한 Y의 관계. np.random.seed(3) x=np.linspace(-1, 5, 100) y=0.3*x+np.random.rand(100) y1=0.56+0.4*x y2=0.45+0.32*x y3=0.2+0.44*x y4=0.7+0.2*x col=["brown...