기본 콘텐츠로 건너뛰기

라벨이 표본비교인 게시물 표시

[matplotlib]quiver()함수

[data analysis]두 독립집단의 비교

두 독립집단의 비교 내용 두 표본의 비교 등분산인 두 소규모 표본의 비교 이분산인 두 소규모 표본의 비교 두 대규모 표본의 비교 식 1과 같이 정규분포를 따르는 두 개의 독립 확률변수 X, Y의 평균을 비교하기 하기 위해 가설검정을 적용합니다. \begin{align}\bar{x}&=\frac{\sum^n_{i=1} x_i}{n_X} \sim N\left(\mu_x, \frac{\text{s}_x}{n_x}\right)\\ \bar{y}&=\frac{\sum^n_{i=1} y_i}{n_Y} \sim N\left(\mu_y, \frac{\text{s}_y}{n_y}\right)\\& n: \text{샘플의 크기}, \; s: \text{표본의 표준편차}\end{align} (식 1) 이 분석의 귀무가설은 식 2와 같습니다. H0 : μ X - μ Y = 0 (식 2) 귀무가설의 검정통계량은 두 집단이 결합한 분포로부터 계산됩니다. 즉, X, Y의 결합 확률분포의 평균과 표준편차는 식 3과 같이 계산됩니다. \begin{align}E(X-Y)&=E(X)-E(Y)\\&=\mu_x-\mu_y\\\text{Var}(X-Y)&=\text{Var}(X)+\text{Var}(Y)-\text{Cov}(X,Y)\\ &=\frac{\sigma_x^2}{n_x}+\frac{\sigma_y^2}{n_y}\\&\text{Cov}(X,Y)=0\quad \because\;X,\,Y:\text{독립}\\& n: \text{샘플의 크기}, \; \mu: \text{평균},\;\sigma: \text{표준편차}\end{align} (식 3) 식 3에서 Cov는 공분산(covariance) 을 의미합니다. 즉, X, Y 두 집단 사이에 교호작용의 효과를 고려하는 것으로 두 집단이 독립이라는 가정에 의해 0이 됩니다. 이 가정에 부합하는 두 집단의 결합확률분포는 식 4와 같이...