Levene Test 관련된 내용 Bartlett 검정 Fligner 검정 Levene Test Breusch-Pegan 검정 Levene 테스트는 k 샘플(그룹)들의 등분산성을 검정하기 위해 사용합니다. 일부 통계 테스트(예: 분산 분석)에서는 분산이 그룹 또는 샘플 간에 동일하다고 가정하며 회귀분석에서는 다양한 회귀모델들로 계산되는 오차 분포의 분산이 동일하다고 가정합니다. Levene 테스트를 사용하여 이러한 가정을 확인할 수 있습니다. Levene 검정은 Bartlett 검정의 대안으로 자료의 정규성이 불확실한 경우 선호됩니다. 그러나 데이터가 실제로 정규 분포 또는 거의 정규 분포에서 나왔다는 강력한 증거가 있다면 Bartlett의 검정이 더 나은 성능을 보입니다. Levene 검정의 귀무가설과 대립가설은 일반적으로 다음과 같이 기술할 수 있습니다. H0: σ 1 = σ 2 = … = σ k H1: 최소한 한 그룹의 분산이 다름 Levene 검정 통계량(W)은 식 1와 같이 정의됩니다. \begin{align} W&=\frac{N-k}{k-1}\frac{\sum^k_{i=1}n_i(Z_{i.}-Z_{..})^2}{\sum^k_{i=1}\sum^{n_i}_{j=1}(Z_{ij}-Z_{i.})^2}\\ Z_i & =\frac{1}{n_i}\sum^{n_i}_{j=1}Z_{ij}\\ Z_{..} & =\frac{1}{N}\sum^k_{i=1}\sum^{n_i}_{j=1}Z_{ij}\\ & k: \,\text{그룹의 수} \\ & n_i: \,\text{i번째 그룹에 속하는 샘플의 수} \\ & N: \,\text{총 샘플 수} \\ & Z_{ij}:\, \text{i번째 그룹의 j번째 관측값}\, y_{ij}\text{과}\, \hat{y_i}\text{의} L_1 \text{norm입니다.}\end{align} (식 1) Z ij 는 식 2와 같이 계...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.