기본 콘텐츠로 건너뛰기

라벨이 ordinalEncoder인 게시물 표시

[matplotlib]quiver()함수

[data analysis] 순서형 인코딩(Ordinal encoding)

순서형 인코딩(Ordinal encoding) 순서를 정할 수 있는 범주형 변수의 경우 정수 배열로 인코딩할 수 있습니다. 예를 들어 다음 자료는 3개의 변수와 두개의 샘플을 가집니다. 변수1 변수2 변수3 1 male from US uses Safari 2 female from Europe uses Firefox 각 변수에 따라 알파벳 순으로 순서를 지정할 수 있습니다. male과 female의 경우는 1, 0으로 변환됩니다. OrdinalEncoder() 클래스를 사용합니다. sklearn.preprocessing.OrdinalEncoder(categories="auto") 목록변수를 정수(배열형)로 인코딩하는 클래스 categories를 기본값(auto)으로 지정하면 고유값들을 올림차순으로 지정하고 각각에 대응하는 인덱스로 변환, 동일한 형태의 배열형태로 값을 지정하면 그 값에 대응하여 변환 odeco=preprocessing.OrdinalEncoder() X = [['male', 'from Europe', 'uses Safari'], ['female', 'from US', 'uses Firefox']] odeco.fit(X) print(odeco.categories_) [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)] print(odeco.transform(X)) [[1. 0. 1.] [0. 1. 0.]] 위 결과와 같이 각 변수(열) 단위로 순서가 지정됩니다. new=odeco.t...