shapiro-Wilk test 관련된 내용 Q-Q plot shapiro-Wilk test Kolmogorov-Smirnov Test Anderson-Darling 검정 Jarque-Bera test 표본 x 1 , x 2 , …, x n 이 정규분포에 부합성 여부를 검정하기 위해 식 1과 같이 계산되는 shapiro-Wilk통계량인 W 를 사용하여 귀무가설(H0: 정규분포를 따릅니다.) 검정을 실시합니다. \begin{align}W&=\frac{\left(\sum^m_{i=1}a_ix_{(i)} \right)^2}{\sum^n_{i=1}(x_i-\bar{x})^2}\\x_{(i)}&=x_{n+1-i}-x_i\\ & n: \text{표본의 크기}\\ & m=\begin{cases}\frac{n}{2}&\text{for}\;n=\text{짝수}\\\frac{n-1}{2}&\text{for}\;n=\text{홀수} \end{cases}\end{align} (식 1) 식 1에서 a i 는 두 값 차이에 대한 가중치입니다. 그 가중치들은 정렬된 자료의 평균, 표준편차 등 통계량을 기준으로 산출된 상수로서 shapiro-Wilk table에서 결정할 수 있습니다. 식 1의 x (i) 를 나타내는 i는 [0, m] 사이의 정수값입니다. 즉 W값은 전체 퍼짐의 정도에서 각각의 작은값과 큰값의 차이의 비를 나타낸 값입니다. Shapiro-Wilk 검정의 W는 다음 과정으로 계산합니다. data 정렬 SS 계산 $SS=\sum^n_{i=1}(x_i-\bar{x})^2$ W의 분자인 b를 계산 $b=\sum^m_{i=1} a_i(x_{n+1-i}-x_i)$ 검정 통계량(W)계산 $W=\frac{b^2}{SS}$ shapiro-Wilk table를 기준으로 p-value를 산출 shapiro-Wilk table은 샘플수에 대한 가중치(a i )와 특정 유...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.