기본 콘텐츠로 건너뛰기

라벨이 kdeplot인 게시물 표시

[matplotlib]quiver()함수

[seaborn] 이변량 분포의 시각화

이변량 분포의 시각화 그래프를 작성하기 위해 kospi 지수의 일일자료를 호출하여 사용합니다. import numpy as np from sklearn.datasets import make_blobs import pandas as pd from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt plt.rcParams['font.family'] ='NanumGothic' plt.rcParams['axes.unicode_minus'] =False import seaborn as sns import yfinance as yf from scipy import stats st=pd.Timestamp(2023, 10, 17) et=pd.Timestamp(2024, 10, 17) kos=yf.download("^KS11",st, et) kos=kos.drop('Adj Close', axis=1) kos.columns=kos.columns.levels[0][1:] scaler=StandardScaler().fit(kos) kos1=scaler.transform(kos) kos1df=pd.DataFrame(kos1) kos1df.columns=kos.columns kos1df['coChg']=pd.qcut(np.ravel((kos1df.Close-kos1df.Open)/kos1df.Open*100), 10, range(10)) kos1df['volChg']=pd.qcut(np.ravel(kos1df.Volume.pct_change()), 5, range(5)) kos1df=kos1df.dropna() kos1df.head(3) Price Close High Low Open Volume ...

[seaborn] 데이터분포의 시각화 2: Kernel density estimation

데이터분포의 시각화 2: Kernel density estimation 히스토그램 작성을 위해 사용한 histplot()은 각 구간(bin)에 대응하는 빈도수(Count)를 작성한 것입니다( 데이터분포의 시각화(histplot & displot) 참조). 빈도수를 정규화한 통계량인 density 로 그래프를 작성하기 위해 figure-level 함수인 displot() 의 인수 stat를 stat="density" 로 지정합니다. 또한 y-축에 확률(probability)를 나타내기 위해 stat="probabilty" 로 지정합니다. axes-level 함수인 kdeplot() 으로 작성할 수 있습니다( Figure-level과 Axes-level 함수 그리고 히스토그램 참조 참조). import numpy as np from sklearn.datasets import make_blobs import pandas as pd from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt plt.rcParams['font.family'] ='NanumGothic' plt.rcParams['axes.unicode_minus'] =False import seaborn as sns import yfinance as yf 사용할 데이터로 코스피 지수의 일일자료(^KS11)를 모듈 yfiance를 사용하여 호출합니다. 그 자료에서 에 대해 일일변화율(시가에 대한 종가의 변화율)과 일간 거래량(Volume)의 변화율을 목록화하여 첨가하여 다음코드의 결과인 kos1df 자료를 생성합니다. st=pd.Timestamp(2023, 10, 17) et=pd.Timestamp(2024, 10, 17) kos=yf.download("^KS11",st, et) kos=kos.drop('...

[seaborn] Figure-level과 Axes-level 함수 그리고 히스토그램

Figure-level과 Axes-level 함수 그리고 히스토그램 seaborn은 dataframe과 array에서 작동에서 작동하며 내부적으로 필요한 mapping과 통계적 집계를 수행하여 플롯을 작성합니다. seaborn의 함수들은 플롯을 작성하기 위해 기본적으로 matplotlib를 사용하므로 이 패키지의 형식에 의존지만 이 패키지와는 독자적으로 실행되는 실행되는 함수가 존재합니다. 이러한 함수는 figure-level function이라 하며 matplotlib와 연결되는 함수를 axes-level fuction으로 구분합니다. seaborn은 플롯팅 함수는 "관계형(relation)", "분포형(distribution)", "범주형(categorical)"으로 구분할 수 있습니다. 각각은 relplot(), displot(), catplot() 함수로 작성할 수 있습니다. 이 함수들은 figure-level 함수들로 다음 표와 같이 다양한 axes-level 함수들을 포함합니다. 형태 figure-level 함수 axes-level 함수 relation relplot scatterplot, lineplot distribution displot histplot, kdeplot, ecdfplot, rugplot categrorical catplot stripplot, swarmplot, boxplot, violineplt, pointplot, barplot 위에서 언급한 것과 같이 figure-level 함수는 matplotlib와 별개로 작성됩니다. 그러므로 이 함수들을 사용하는 경우 FacetGrid() 함수를 통해 레이아웃을 변경할 수 있습니다. 반면에 axes-level 함수는 axes 수준에서 플롯을 작성되며 matplotlib의 axes 수준을 따릅니다. 그러므로 plt.figure()에 의한 레이아웃의 변경이 이루어 집니다. 데이터 penguins를...