코시-슈바르츠와 삼각부등식 코시-슈바르츠 부등식(Cauchy-Schwarz Inequality) 삼각 부등식(triangle inequality) 코시-슈바르츠 부등식(Cauchy-Schwarz Inequality) 임의의 두 벡터 a와 b의 곱의 크기는 각 벡터의 노름(norm)의 곱보다 크지 않습니다. 이 관계를 코시-슈바르츠 부등식(Cauchy-Schwarz Inequality) 이라 하며 식 1과 같이 나타낼 수 있습니다. $$\vert {a^Tb}\vert \le \Vert{a}\Vert \Vert{b}\Vert$$ (식 1) 식 1을 벡터의 요소별로 풀어 쓰면 식 2와 같습니다. $$\vert {a_1b_1+\cdots + a_nb_n}\vert \le \sqrt{a_1^2+\cdots+a_n^2}\sqrt{b_1^2+\cdots+b_n^2}$$ (식 2) 식 2에서 두 벡터가 a, b 모두 0일 경우에만 등호가 성립합니다. 그러므로 두 벡터 모두 0이 아닌 조건에서 코시-슈바르츠 부등식을 증명할 수 있습니다(식 3). \begin{align} \text{가정}:&\;a\ne 0, \; b\ne 0, \;\alpha=\Vert {a} \Vert,\; \beta=\Vert{b}\Vert \\ 0&\le \Vert {\beta a - \alpha a} \Vert^2\\ & = \Vert {\beta a} \Vert^2 - 2(\beta a)^T \alpha b +\Vert {\alpha b} \Vert^2\\ & = \beta^2\Vert { a} \Vert^2 - 2\alpha \beta (a^Tb) +\alpha^2\Vert { b} \Vert^2\\ & = \Vert { b} \Vert^2\Vert { a} \Vert^2 - 2\Vert {a} \Vert \Vert { b} \Vert (a^Tb) +\Vert { a} \Vert^2\Vert { b} \Vert...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.