기본 콘텐츠로 건너뛰기

라벨이 R cov인 게시물 표시

[matplotlib]quiver()함수

R 상관성(correlation)과 상관분석

내용 공분산과 상관계수 PEARSON, SPEARMAN 및 KENDALL 상관 관계 부분상관(Partial correlations) 상관 분석 상관성(correlations)과 상관분석 상관 계수는 양적 변수(quantative variables) 간의 관계를 설명하는 데 사용됩니다. ± 기호는 관계의 방향을 나타내고 크기는 관계의 강도를 나타냅니다(관계가 없는 경우 0에서 완벽하게 예측 가능한 관계인 경우 1). 예를 들어 두 변수 x1과 x2에서 x1의 변화에 따라 x2가 변화한다면 두 변수는 서로 상관성이 존재합니다. 이 상관성의 정도를 나타내는 것이 상관계수이며 이는 두 변수의 공분산(covariance)으로부터 계산됩니다. 공분산과 상관계수 공분산은 각 변수의 편차들의 곱에 대한 기대값입니다. $$\begin{equation} \text{Cov}(Y_1, Y_2)=E[(Y_1-\mu_1)(Y_2-\mu_2)] \end{equation}$$ $$\begin{align}&\begin{aligned}\text{Cov}(Y_1, Y_2)&=E[(Y_1-\mu_1)(Y_2-\mu_2)]\\&=E(Y_1Y_2-Y_1\mu_2-\mu_1 Y_2+\mu_1 \mu_2)\\&= E(Y_1Y_2)-E(Y_1)\mu_2-\mu_1E(Y_2)+\mu_1 \mu_2\\&=E(Y_1Y_2)-\mu_1 \mu_2\end{aligned} \\& \because\; E(Y_1)=\mu_1, \quad E(Y_2)=\mu_2\end{align}$$ 두 변수간의 공분산의 절대값의 증가에 따라 선형 의존성은 증가하며 양의 공분산은 정상관계, 음의 값은 역상관계를 의미합니다. 공분산이 0이라면 두 변수 사이의 선형의존성은 없습니다. 그러나 각 변수의 측정척도가 다른 경우 선형성에 대한 즉, 두 변수의 의존성에 대해 공분산을 절대적인 척도로 사용하는 것은 어렵습니다. 결과적으로 공분산만으로 선형성의 정도를 ...