기본 콘텐츠로 건너뛰기

라벨이 유리함수인 게시물 표시

[matplotlib]quiver()함수

함수의 그래프: 유리함수와 점근선

다음 그림들은 전자책 파이썬과 함께하는 미분적분 의 5.3장에 수록된 그래프들과 코드들입니다. import numpy as np import pandas as pd from sympy import * import matplotlib.pyplot as plt import seaborn as sns sns.set_style("darkgrid") #그림 5.3.1 x=symbols('x') f=(x**2-1)/(x**2+x-6) x1, x2, x3=np.linspace(-6, -3.01, 30), np.linspace(-2.99, 1.99, 30), np.linspace(2.01, 6, 30) y1, y2, y3=[f.subs(x, i) for i in x1], [f.subs(x, i) for i in x2], [f.subs(x, i) for i in x3] plt.figure(figsize=(4, 3)) plt.plot(x1, y1, color="g", label="f(x)") plt.plot(x2, y2, color="g") plt.plot(x3, y3, color="g") plt.vlines(-3, -10, 10, ls="--", color="brown" , label="x=-3") plt.vlines(2, -10, 10, ls="--", color="brown" , label="x=2") plt.hlines(1, -6, 6, ls="--", color="r" , label="y=1") plt.xlabel("x",loc="right", fontsize="11") plt.ylabel("y", rotation="hori...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...