기본 콘텐츠로 건너뛰기

라벨이 선형종속인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra] 선형독립과 선형종속

선형 독립과 선형 종속 ℝ 공간의 벡터들(v 1 , v 2 , …, v p )과 스칼라(c 1 , c 2 , …, c p )의 동차선형결합(Homogeneous Linear Combination) 은 식 1과 같이 행렬 방정식의 형태로 나타낼 수 있습니다. \begin{align}v_1c_1+v_2c_2+\cdots+v_pc_p &=0\\ \Rightarrow\begin{bmatrix}v_{11}& v_{12}& \cdots & v_{1p}\\ v_{21}& v_{22}& \cdots & v_{2p}\\ \vdots& \vdots& \ddots& \vdots\\ v_{n1}& v_{n2}& \cdots & v_{np}\end{bmatrix} \begin{bmatrix} c_1\\c_2\\\vdots\\c_p\end{bmatrix} &= \begin{bmatrix} 0\\0\\\vdots\\0\end{bmatrix}\end{align} (식 1) 동차 선형 결합이 자명한 해(trivial solution) 를 갖는다면 선형 독립(linear independent) 라고 하고 위 식을 만족시키기 위한 자명하지 않은 해(nontrivial solution)을 갖는다면 선형 종속(linear dependent) 이라고 합니다. 예 1) 다음시스템의 선형 독립성을 결정합니다. \begin{align}3x_1 + 5x_2 - 4x_3 &= 0\\ -3x_1 - 2x_2 + 4x_3 &= 0\\  6x_1 + x_2 - 8x_3 &= 0\end{align} 다음 코드에서 객체 aug 와 같이 각 식을 벡터로 전환하여 행기준으로 결합하면 확대행렬이 됩니다. aug 에서 상수항을 제외하면 표준행렬(A)이 됩니다. v1=np.array([1, 2, 3]) v2=np.array([4, 5, 6]) v3=np.array...

[Linear Algebra] 역행렬(Inverse matrix)

역행렬(Inverse matrix) 관련된 내용 기약행 사다리꼴 형태 (Reduced row echelon form, rref) 행렬식 식 1과 같이 두 행렬의 행렬곱 결과가 항등행렬 을 생성한다면 행렬 B는 행렬 A의 역행렬(inverse matrix) 이 되며 A -1 로 나타냅니다. 물론 역도 성립합니다. A · B = I → B = A -1 (식 1) 역행렬을 가지는 행렬을 가역행렬(reversible matrix) 이라고 하며 np.linalg.inv() 함수에 의해 계산할 수 있습니다. a=np.array([[1,3,-5], [-2,7,8], [4,0,6]]) print(a) [[ 1 3 -5] [-2 7 8] [ 4 0 6]] a_inv=la.inv(a) # a의 역행렬 print(a_inv.round(2)) [[ 0.134 -0.057 0.188] [ 0.14 0.083 0.006] [-0.089 0.038 0.041]] 위 코드의 결과 a_inv의 각 요소를 반올림을 실행하기 위해 .round() 메소드를 적용하였습니다. aa_inv=a.dot(a_inv) print(aa_inv.round(2)) [[ 1. 0. -0.] [ 0. 1. 0.] [ 0. -0. 1.]] 이 역행렬은 식 2와 같은 연립방정식의 해를 계산하기 위해 사용됩니다. $$\begin{aligned}x+y+2z&=9\\2x+4y-3z&=1\\3x+6y-5z&=0 \end{aligned} \Rightarrow \begin{bmatrix}1&1&2\\2&4&-3\\3&6&-5\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix} 9\\1\\0\end{bmatrix}$$ (식 2) 식 2의 우항은 식 3과 같이 방정식들...