기본 콘텐츠로 건너뛰기

라벨이 다중회귀분석인 게시물 표시

[matplotlib]quiver()함수

[data analysis] 다중 회귀모형의 진단

다중 회귀모형의 진단 내용 정규성(normality) 과 이상치(outlier) 평가 독립성 선형성과 자기상관 등분산성 단순회귀모형과 같이 회귀분석은 몇 가지 가정 을 전제한 상태에서 모형을 구축합니다. 그러므로 그 가정의 충족되지 않은 자료들에서 생성된 모형의 경우 적용과 적합성에 문제가 발생됩니다. 예를 들어 데이터가 정규분포를 따르지 않는 상태에서 구축된 회귀모형의 예측 범위는 매우 넓어질 수 있으므로 그 자체의 의미가 감소됩니다. 또한 변수들의 독립성에 문제가 있는 경우 반응변수에 대한 설명변수들의 선택에서 발생하는 오류는 실제와 다른 결과를 가져올 수 있습니다. 이 원인들은 모두 회귀모형의 신뢰도를 악화시키며 예측정도를 빈약하게 만들 수 있습니다. 정규성(normality) 과 이상치(outlier) 평가 예 1) 다음 코드에 의해 생성된 자료 코스피지수(kos), 코스탁지수(kq), kodex 레버리지(kl), kodex 인버스(ki), 그리고 원달러환율(WonDol)의 일일 종가들을 설명변수로 사용하여 삼성전자(sam)의 일일 종가를 추정하는 회귀모델을 구축해 봅니다. (이 자료에서 설명변수는 반응변수보다 1일 앞선 데이터 입니다.) import numpy as np import pandas as pd import yfinance as yf st=pd.Timestamp(2023,1, 10) et=pd.Timestamp(2024, 5, 30) code=["^KS11", "^KQ11", "122630.KS", "114800.KS","KRW=X","005930.KS"] nme=["kos","kq","kl", "ki", "WonDol","sam" ] da={} for i, j in zip(nme,c...

[data analysis] 다중회귀모델의 생성

회귀모델 생성 1개 이상의 설명변수들과 1개의 반응변수를 가진 선형모델 역시 statsmodels.api.OLS() 클래스와 sklearn.linear_model() 클래스를 적용하여 구축할 수 있습니다. 이 모델의 구축과정과 평가방법은 단순회귀분석(Simple regression) 과 같습니다. 예 1) 코스피지수(kos), 코스탁지수(kq), kodex 레버리지(kl), kodex 인버스(ki), 그리고 원달러환율(WonDol)의 일일 종가들을 설명변수로 사용하여 삼성전자(sam)의 일일 종가를 추정하는 회귀모델을 구축해 봅니다. (이 자료에서 설명변수는 반응변수보다 1일 앞선 데이터 입니다.) kos kq kl ki WonDol sam Date 2023-01-10 2351.0 696.0 14440.0 4885.0 1239.0 60400.0 2023-01-11 2360.0 710.0 14525.0 4875.0 1240.0 60500.0 2023-01-12 2365.0 711.0 14580.0 4860.0 1242.0 60500.0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 다음은 위 자료들을 호출하고 분석에 적합하게 조절하기 위한 코드들입니다. import numpy as np import pandas as p...