선형회귀 모델에 의한 주가 예측 sklearn.linear_model.LinearRegression() 클래스를 사용합니다. import numpy as np import pandas as pd import pandas_ta as ta import matplotlib.pyplot as plt import FinanceDataReader as fdr import matplotlib.pyplot as plt from scipy import stats from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, mean_squared_error, r2_score st=pd.Timestamp(2023, 1,1) et=pd.Timestamp(2025, 5,20) trgnme="000660" trg=fdr.DataReader(trgnme, st, et) df=trg[["Open", "High", "Low", "Close", "Volume"]] df.tail(1) Open High Low Close Volume Date 2025-05-20 202500 208000 201500 202000 ...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.