기본 콘텐츠로 건너뛰기

라벨이 complex_number인 게시물 표시

[matplotlib]quiver()함수

복소수 (Complex Number)

복소수(complex number) import numpy as np 제곱근의 경우 제곱근내의 수는 양수이어야 계산이 이루어집니다. $$\sqrt{9}=9^\frac{1}{2}=3$$ 그러나 아래와 같이 음수의 제곱근 일 경우 실수로 계산할 수 없습니다. 수학에서 $\sqrt{-1}=i$로 정의 하며 i 를 포함하는 수는 복소수(complex number) 라고 합니다. 파이썬에서는 j 로 표현합니다. $$\sqrt{-9}=\sqrt{9}\sqrt{-1}=9^\frac{1}{2}\sqrt{-1}=3i$$ 복소수 $$\tag{식 1}a+bi\;\text{또는}\; a+bj$$ a: 실수부분(real part) b: 허수부분 (imaginary part) a,b는 정수, 유리수, 분수 등 다양한 형태의 수입니다. 또한 복소수의 허수부분 부호가 반대인 경우를 켤레복소수(conjugate complex number) 라고 하며 일반적으로 복소수 z의 켤레복소수는 $\bar{z}$과 같이 객체 위의 선(overline)으로 나타냅니다. 즉 $a+bi$의 켤레복소수는 $a-bi$가 됩니다. 파이썬에서 복소수는 j로 표시하며 complex(실수, 허수) 함수로 생성합니다. A=complex(2,3) A (2+3j) 클래스 complex()로 생성되는 객체(복소수)는 그 객체의 실수부와 허수부를 각각 반환하는 속성(attribute)으로 객체.real, 객체.imag 를 포함합니다. A.real 2.0 A.imag 3.0 A의 켤레복소수는 complex()클래스의 메서드인 객체.conjugate() 로 계산됩니다. A.conjugate() (2-3j) 복소수의 덧셈과 뺄셈은 실수부 사이, 허수부 사이에서 이루어집니다. 예 1) 두 복소수의 덧셈을 계산합니다. A=-4+7i, B=5-10i A=complex(-4, 7) B=complex(5,-10) A,...