기본 콘텐츠로 건너뛰기

라벨이 경험적누적분포인 게시물 표시

[matplotlib]quiver()함수

[seaborn] 데이터분포의 시각화 3: 경험적 누적분포(ECDF)

데이터분포의 시각화 3: 경험적 누적분포(ECDF) 식 1에 의해 계산되는 경험적 누적분포함수는 데이터 분포의 정규성을 평가하거나 서로 다른 여러 표본 분포를 비교할 때 사용합니다( Kolmogorov-Smirnov Test 참조). 이 함수는 샘플 기반의 누적분포(CDF)의 계단함수(step function)을 나타냅니다. \begin{align}&\text{ECDF}=\frac{n(i)}{N}\\ &n(i): \text{오름차순으로 정렬한 각 요소의 위치} \\&H: \text{자료의 크기} \end{align} scipy.stats.ecdf() 함수로 계산할 수 있으며 이 함수의 속성 .probailities 로 ECDF를 확인할 수 있습니다. 이 함수에 전달되는 객체는 오름차순으로 정렬된 데이터입니다. import numpy as np from sklearn.datasets import make_blobs import pandas as pd from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt plt.rcParams['font.family'] ='NanumGothic' plt.rcParams['axes.unicode_minus'] =False import seaborn as sns import yfinance as yf 사용할 데이터로 코스피 지수의 일일자료(^KS11)를 모듈 yfiance를 사용하여 호출합니다. 그 자료에서 에 대해 일일변화율(시가에 대한 종가의 변화율)과 일간 거래량(Volume)의 변화율을 목록화하여 첨가하여 다음코드의 결과인 kos1df 자료를 생성합니다. st=pd.Timestamp(2023, 10, 17) et=pd.Timestamp(2024, 10, 17) kos=yf.download("^KS11",st, et) kos=kos.drop...