기본 콘텐츠로 건너뛰기

[matplotlib] 등고선(Contour)

[seaborn] 데이터분포의 시각화 3: 경험적 누적분포(ECDF)

데이터분포의 시각화 3: 경험적 누적분포(ECDF)

식 1에 의해 계산되는 경험적 누적분포함수는 데이터 분포의 정규성을 평가하거나 서로 다른 여러 표본 분포를 비교할 때 사용합니다(Kolmogorov-Smirnov Test 참조). 이 함수는 샘플 기반의 누적분포(CDF)의 계단함수(step function)을 나타냅니다.

ECDF=n(i)Nn(i):오름차순으로 정렬한 각 요소의 위치H:자료의 크기

scipy.stats.ecdf() 함수로 계산할 수 있으며 이 함수의 속성 .probailities로 ECDF를 확인할 수 있습니다. 이 함수에 전달되는 객체는 오름차순으로 정렬된 데이터입니다.

import numpy as np
from sklearn.datasets import make_blobs
import pandas as pd
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
plt.rcParams['font.family'] ='NanumGothic'
plt.rcParams['axes.unicode_minus'] =False
import seaborn as sns
import yfinance as yf

사용할 데이터로 코스피 지수의 일일자료(^KS11)를 모듈 yfiance를 사용하여 호출합니다. 그 자료에서 에 대해 일일변화율(시가에 대한 종가의 변화율)과 일간 거래량(Volume)의 변화율을 목록화하여 첨가하여 다음코드의 결과인 kos1df 자료를 생성합니다.

st=pd.Timestamp(2023, 10, 17)
et=pd.Timestamp(2024, 10, 17)
kos=yf.download("^KS11",st, et)
kos=kos.drop('Adj Close', axis=1)
scaler=StandardScaler().fit(kos)
kos1=scaler.transform(kos)
kos1df=pd.DataFrame(kos1)
kos1df.columns=kos.columns
kos1df['coChg']=pd.qcut((kos1df.Close-kos1df.Open)/kos1df.Open*100, 10, range(10))
kos1df['volChg']=pd.qcut(kos1df.Volume.pct_change(), 5, range(5))
kos1df=kos1df.dropna()
kos1df.head(3)
Open High Low Close Volume coChg volChg
1 -1.442811 -1.449859 -1.297633 -1.325313 3.272987 3 4
2 -1.606734 -1.712166 -1.603687 -1.703523 2.085993 6 2
3 -1.935555 -2.031246 -1.992279 -2.033245 0.271720 6 1
from scipy import stats
trg1=np.sort(kos1df.Close)
trg=stats.ecdf(trg1)
trg.cdf.plot()
plt.show()

seaborn의 displot(kind="ecdf"), ecdfplot()으로 작성할 수 있습니다. 다음 그림의 그래프 (b)는 위 결과 trg.cdf.probabilities에 대해 선그래프를 작성한 것입니다.

fig,axs=plt.subplots(1,2)
sns.ecdfplot(kos1df, x="Close", ax=axs[0]).set(title="(a)")
sns.lineplot(x=trg1, y=np.append(0,trg.cdf.probabilities), ax=axs[1]). set(title="(b)")
plt.show()
sns.displot(kos1df, x="Close", kind="ecdf")
plt.show()

인수 hue에 클래스를 가진 변수를 지정하여 클래스 간의 ecdf를 비교할 수 있습니다.

sns.displot(kos1df, x="Close", hue="volChg", kind="ecdf")
plt.show()

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. (1)A=PBP1P1AP=B 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. (식 2)BλI=P1APλP1P=P1(APλP)=P1(AλI)P 식 2의 행렬식은 식 3과 같이 정리됩니다. det(BλI)=det(P1(APλP))=det(P1)det((AλI))det(P)=det(P1)det(P)det((AλI))=det(AλI)det(P1)det(P)=det(P1P)=det(I) 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a sin2(x)+cos2(x) simplify(a) 1 simplify(b) x3+x2x1x2+2x+1 simplify(b) x - 1 c=gamma(x)/gamma(x-2) c Γ(x)Γ(x2) simplify(c) (x2)(x1) 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. (식 1)Γ(n)={(n1)!n:자연수0xn1exdxn:부동소수 x=symbols('x') gamma(x).subs(x,4) 6 factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 x2=1의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. x21=0 import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. x21=0(x+1)(x1)=0x=1or1x4=1의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. x41=(x2+1)(x+1)(x1)=0x=±1,±1=±i,±1 실수...