기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

[seaborn] 데이터분포의 시각화 3: 경험적 누적분포(ECDF)

데이터분포의 시각화 3: 경험적 누적분포(ECDF)

식 1에 의해 계산되는 경험적 누적분포함수는 데이터 분포의 정규성을 평가하거나 서로 다른 여러 표본 분포를 비교할 때 사용합니다(Kolmogorov-Smirnov Test 참조). 이 함수는 샘플 기반의 누적분포(CDF)의 계단함수(step function)을 나타냅니다.

\begin{align}&\text{ECDF}=\frac{n(i)}{N}\\ &n(i): \text{오름차순으로 정렬한 각 요소의 위치} \\&H: \text{자료의 크기} \end{align}

scipy.stats.ecdf() 함수로 계산할 수 있으며 이 함수의 속성 .probailities로 ECDF를 확인할 수 있습니다. 이 함수에 전달되는 객체는 오름차순으로 정렬된 데이터입니다.

import numpy as np
from sklearn.datasets import make_blobs
import pandas as pd
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
plt.rcParams['font.family'] ='NanumGothic'
plt.rcParams['axes.unicode_minus'] =False
import seaborn as sns
import yfinance as yf

사용할 데이터로 코스피 지수의 일일자료(^KS11)를 모듈 yfiance를 사용하여 호출합니다. 그 자료에서 에 대해 일일변화율(시가에 대한 종가의 변화율)과 일간 거래량(Volume)의 변화율을 목록화하여 첨가하여 다음코드의 결과인 kos1df 자료를 생성합니다.

st=pd.Timestamp(2023, 10, 17)
et=pd.Timestamp(2024, 10, 17)
kos=yf.download("^KS11",st, et)
kos=kos.drop('Adj Close', axis=1)
scaler=StandardScaler().fit(kos)
kos1=scaler.transform(kos)
kos1df=pd.DataFrame(kos1)
kos1df.columns=kos.columns
kos1df['coChg']=pd.qcut((kos1df.Close-kos1df.Open)/kos1df.Open*100, 10, range(10))
kos1df['volChg']=pd.qcut(kos1df.Volume.pct_change(), 5, range(5))
kos1df=kos1df.dropna()
kos1df.head(3)
Open High Low Close Volume coChg volChg
1 -1.442811 -1.449859 -1.297633 -1.325313 3.272987 3 4
2 -1.606734 -1.712166 -1.603687 -1.703523 2.085993 6 2
3 -1.935555 -2.031246 -1.992279 -2.033245 0.271720 6 1
from scipy import stats
trg1=np.sort(kos1df.Close)
trg=stats.ecdf(trg1)
trg.cdf.plot()
plt.show()

seaborn의 displot(kind="ecdf"), ecdfplot()으로 작성할 수 있습니다. 다음 그림의 그래프 (b)는 위 결과 trg.cdf.probabilities에 대해 선그래프를 작성한 것입니다.

fig,axs=plt.subplots(1,2)
sns.ecdfplot(kos1df, x="Close", ax=axs[0]).set(title="(a)")
sns.lineplot(x=trg1, y=np.append(0,trg.cdf.probabilities), ax=axs[1]). set(title="(b)")
plt.show()
sns.displot(kos1df, x="Close", kind="ecdf")
plt.show()

인수 hue에 클래스를 가진 변수를 지정하여 클래스 간의 ecdf를 비교할 수 있습니다.

sns.displot(kos1df, x="Close", hue="volChg", kind="ecdf")
plt.show()

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b