기본 콘텐츠로 건너뛰기

라벨이 교차검정인 게시물 표시

[matplotlib]quiver()함수

[data analysis] Ridge 회귀모델

Ridge 회귀모델 Ridge 회귀에서의 mse식은 식 1과 같이 OLS로부터의 값에 회귀계수에 가중치를 고려하여 정의합니다. 이항을 패널티(penalty) 라고 하며 가중치는 패널티를 조절하기 위한 것으로 α라는 소멸 상수(shrinkage constant) 라고 합니다. 이 식으로 정의된 회귀계수의 경우 가중치로 인해 큰 값과 작은 값의 차이가 증가하므로 큰 계수에 의한 영향은 더욱 커지지만 작은 크기의 계수에 의한 영향은 더욱 감소할 것입니다. 이 과정은 영향력이 큰 설명변수들을 선택하는 것과 유사한 효과가 발생합니다. \begin{align}\text{MSE}&= (y − Xβ)^T(y − Xβ)-\alpha\Vert{\beta^2}\Vert \quad \alpha \ge 0\\ \frac{\partial \text{MSE}}{\partial \beta}& = −2X^Ty + 2X^TXβ - 2αβ = 0\\ \tag{식 1} \Leftrightarrow & (X^TX - αI)β = X^Ty\\ \Leftrightarrow & β = (X^TX - αI)^{-1}X^Ty\\ & X,\, y:\; \text{설명, 반응변수}\\& α,\, β:\; \text{소멸계수, 회귀계수}\end{align} 식 1에서 나타낸 것과 같이 ridge 모델의 패널티 항은 L2 Norm (계수의 제곱합)으로 회귀계수에 대해 2차식이 됩니다. 2차식의 미분으로 최소점을 계산할 수 있습니다. 식 2와 같이 X T X + αI는 변수들의 공분산행렬의 대각원소들에게만 변동을 주는 형태로 변수들의 각 분산과 공분산의 차이를 확대시킵니다. 이 결과는 다중공선성 에서 소개한 것과 같이 역행렬의 각 값을 축소하여 회귀계수들이 분산을 감소시킵니다. 이러한 감소는 다중공선성 문제의 축소로 이어야 집니다. $$\tag{식 2}\begin{bmatrix}x_1& x_2& x_3\\y_1& y_2& y_...