기본 콘텐츠로 건너뛰기

라벨이 영변환인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra] 선형변환(Linear transformation)

선형변환(Linear transformation) T: U → V은 벡터 공간의 U를 다른 벡터 공간 V로 옮기는 변환(함수)를 나타냅니다. 이 변환이 선형변환(Linear transformation)이 되기 위해서는 선형결합의 성립을 위한 식 1의 조건을 만족해야 합니다. 즉, 선형결합이 성립되는 벡터들은 선형변환이 가능하다는 것을 의미합니다. \begin{align} &\forall \; \text{u}_1,\; \text{u}_2 \in \text{U} \rightarrow T(\text{u}_1 + \text{u}_2) = T(\text{u}_1)+T(\text{u}_2)\\ &\forall \; \text{u} \in \text{U} \cap α \in \text{C} \rightarrow T(\alpha \text{u}) = \alpha T(\text{u})\\&u,\, v:\; \text{벡터, 스칼라} \end{align} (식 1) 예 1) 다음 식이 선형변환인지를 결정합니다. $$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} \right)=\begin{bmatrix}2x_1+x_3\\-4x_2\end{bmatrix} $$ 위 변환은 식 2와 같이 표준행렬 A에 의한 선형결합으로 나타낼 있습니다. \begin{align}\begin{bmatrix}2x_1+x_3\\-4x_2\end{bmatrix}&=\begin{bmatrix}2& 0& 1\\0& -4& 0\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\\\Leftrightarrow &\; T=Ax \end{align} (식 2) 식 2의 성립여부는 동차시스템으로 전환한 상태에서 해의 존재를 결정하는 것으로 확인할 수 있습니다. A=np.array([[2,0,1],[0,-4,0]]) c=np.ze...