기본 콘텐츠로 건너뛰기

라벨이 subspace인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra] 부분공간의 차원

부분공간의 차원 관련된 내용 벡터 공간과 부분공간 (vector space & subspace) 예 1) H가 4차원의 좌표(a, b, c, d)에서 다음 식들을 만족하는 모든 벡터들의 집합이라고 한다면 H가 4차원의 부분 공간인지를 확인합니다. \begin{align} a - 2b + 5c - d& = 0\\-a - b + c& = 0\end{align} 위 식은 식 1과 같이 행렬시스템으로 나타낼 수 있습니다. $$\begin{bmatrix} 1&-2&5&1\\-1&-1&1&0\end{bmatrix}\begin{bmatrix} a\\b\\c\\d\end{bmatrix} = \begin{bmatrix} 0\\0\end{bmatrix}$$ (식 1) A=np.array([[1,-2,5,-1],[-1, -1, 1, 0]]) c=np.zeros([2,1]) aug=np.hstack([A, c]) print(aug) [[ 1. -2. 5. -1. 0.] [-1. -1. 1. 0. 0.]] print(np.array(Matrix(aug).rref()[0], dtype=float).round(3)) [[ 1. 0. 1. -0.333 0. ] [ 0. 1. -2. 0.333 0. ]] 선형결합은 2개의 자유 변수 c, d를 포함하므로 자명하지 않은(non trivial) 해를 갖습니다. 즉, 선형 종속으로 선형 결합이 성립하므로 벡터 [[a], [b], [c], [d]]는 4차원의 부분 공간으로 간주할 수 있습니다. 그러나 변수 a, b는 c와 d에 의존적입니다. 이 경우 그 벡터의 차원을 차원을 4차원으로 고정할 수 있을까요? 표준 행렬 A의 각 열벡터 A 1 , A 2 , A 3 , A 4 라고 하면 위 rref의 결과로 A 1 , A 2 가 기저벡터로 나머지 벡터들인 A 3 , A 4...

[Linear Algebra] 벡터 공간과 부분공간 (vector space & subspace)

벡터 공간(vector space)과 부분공간 벡터들의 식 1과 같은 집합 V의 벡터들 사이의 선형결합 이 성립한다는 것은 선으로 표시되는 벡터들에 의해 n차원 등의 공간이 형성된다는 것을 의미합니다. 또한 선형결합의 성립은 그 결과 역시 피연산자인 벡터들에 의해 성립되는 공간에 포함되므로 집합 V에 포함됩니다. 이 집합 V를 벡터 공간(Vector space) 라고 하며 그 공간내에 포함된 벡터들 사이에 다음의 연산이 성립됩니다. V = {v 1 , v 2 , …,v n } (식 1) 표 1 벡터 공간에서의 연산 법칙 u, v ∈ Vector → u+v ∈ Vector α ∈ scalar, u ∈ Vector → αu ∈ Vector u + v = v + u (교환법칙) u + (v + w) = ( u + v) + w (결합법칙) 모든 요소가 0인 0벡터(zero vector)가 존재 u + (-u) = 0 α, β ∈ scalar, u ∈ Vector → α(βu) = (αβ) α ∈ scalar and u ∈ Vector → α(u + v) = αu + αv (분배법칙) α, β ∈ scalar and u ∈ Vector → (α + β)u = α u + β u (분배법칙) u ∈ V → 1·u = u 식 2는 두 벡터 u와 v의 선형결합을 나타낸 것입니다. 이 관계가 성립한다는 것은 두 벡터를 기본으로 하는 공간의 확대와 축소내에 선형결합의 결과가 존재함을 의미합니다. 벡터 u, v 그리고 그들의 선형결합 결과인 벡터들이 존재하는 벡터공간을 부분공간(subspace) 이라 합니다. 이 관계에서 0에 의한 스칼라배는 0벡터를 생성하므로 모든 벡터공간의 부분공간이 됩니다. \begin{align}u&=\begin{bmatrix} a_1\\a_2\\ \vdots \\a_n\end{bmatrix} \in W, \quad v=\begin{bmatrix} b_1\\b_2\\ \vdots \\b...