벡터 사칙연산 벡터, 행렬 등 배열의 사칙연산은 동일한 형태의 객체 중에 동일한 인덱스를 가진 요소들 사이에서 이루어집니다. 다시 말하면, 동일한 인덱스가 존재할 경우에만 연산이 이루어집니다. import numpy as np a=np.array([10,15]) b=np.array([8,2]) c=np.array([1,2,3]) abSum=a+b print(abSum) [18 17] abSub=a-b print(abSub) [ 2 13] print(a-c) ValueError: operands could not be broadcast together with shapes (2,) (3,) 위 코드에서 객체 a와 c는 형태가 다르므로 연산이 이루어지지 않습니다. 벡터 a, b에 연관된 연산은 그림 1과 같이 나타낼 수 있습니다. 그림 1. 두 벡터의 덧셈과 뺄셈. 두 벡터의 덧셈 연산은 그들이 생성할 수 있는 평행사변형의 대각선에 대응하는 벡터와 같습니다. 뺄셈 역시 a + (-b)와 같이 b에 스칼라 -1을 곱한 결과로 덧셈 연산과 같습니다. 그러므로 그림 1에서 나타낸 것과 같이 뻴셈의 결과는 벡터 a와 벡터 -b와의 평행사변형의 대각선을 표현하는 벡터와 같습니다. 식 1에서 나타낸 것과 같이 벡터(또는 행렬) $\vec{u}, \vec{v}, \vec{w}$ 그리고 두 개의 스칼라인 a, b 사이에 연산 법칙을 정의될 수 있습니다. \begin{align}\vec{u}+\vec{v}& = \vec{v}+\vec{u} \\ \vec{u}+(\vec{v}+\vec{w})& = (\vec{v}+\vec{u})+\vec{w}\\ \vec{v}+0 & = \vec{v} \\1\cdot \vec{v}& = \vec{v} \\ a\cdot(\vec{v}+\vec{u}) & = a\cdot\vec{v}+a\cdot\vec{u}\\ ...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.