직교행렬과 주성분(Principal Component) 식 1의 행렬 X를 평균-편차 형태 로 가정합니다. $$\tag{식 1}X=\left[\begin{matrix} x_1 & x_2 & \cdots &x_n \end{matrix}\right]$$ 주성분분석의 목적은 식 2와 같이 X=PY 형태로 변환가능한 p×p차원의 직교 행렬 P를 발견하는 것입니다. \begin{align}\tag{식 2} \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} & = \begin{bmatrix}u_1 & u_2 & \cdots & u_p \end{bmatrix}\begin{bmatrix}y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}\\ P&=\begin{bmatrix} u_1 & u_2 & \cdots & u_p \end{bmatrix} \end{align} 식 2에서 새로운 변수 $y_1, y_2, \cdots, y_p$는 상관성이 없고 내림차순으로 정렬된 형태입니다. Y는 P에 대해 X의 좌표벡터 가 됩니다. P가 직교행렬이므로 식 3이 성립합니다( 정규직교의 특징 참조 ). $$\tag{식 3}P^{-1}PY=P^TPY=P^TX \rightarrow Y=P^TX$$ 식 3으로 부터 새로운 변수인 Y 역시 평균-편차 형태이므로 Y의 공분산 행렬을 유도 할 수 있습니다(식 4). $$\tag{식 4}YY^T=(P^TX)(P^TX)^T=P^TXX^TP=P^TSP$$ S는 변수 X에 대한 공분산 행렬로서 대칭행렬입니다. 식 4에서 $YY^T=A$라 하고 S에 대해 정리하면 식 5와 같습니다. $$\tag{식 5}S=PAP^T$$ S가 대칭행렬이고 P가 직교행렬이므로 위 식은 스펙트럴 분해 와 동일한 형태가 됩니다. 그러므로 행렬 $A=YY^T$는 행렬 S의 고유값들을 내림차순으로 정렬한 값들을 대각...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.