기본 콘텐츠로 건너뛰기

라벨이 dot인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra] 내적(inner product)

내적(Inner product) a, b 두 벡터의 내적(inner product, dot product) 은 식 1과 같이 정의합니다. \begin{align}a&=\begin{bmatrix} a_1\\a_2\end{bmatrix}\; b=\begin{bmatrix} b_1\\b_2\end{bmatrix}\\ a\cdot b& = a_1\times b_1 + a_2\times b_2\end{align} (식 1) 식 1의 결과와 같이 두 벡터의 내적은 스칼라입니다. 같은 인덱스를 가진 성분들사이의 곱들의 총합으로 식 2와 같이 나타낼 수 있습니다. 행렬은 두 개 이상의 벡터들로 구성된 객체로 두 행렬 사이에 내적을 계산할 수 있습니다. 행렬들 사이에 이루어지는 내적을 행렬곱(matrix product) 라고 하지만 구분없이 닷곱, 내적곱이라고 명명합니다. \begin{align}\text{dot prodcut}:&\;\begin{bmatrix} a_1& a_2\end{bmatrix}\begin{bmatrix} b_1\\b_2\end{bmatrix}= a_1 b_1 + a_2 b_2\\\text{matrix product}:&\; \begin{bmatrix} a_{11}& a_{12}\\a_{21}& a_{22}\end{bmatrix}\begin{bmatrix} b_{11}& b_{12}\\b_{21}& b_{22}\end{bmatrix}=\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} \\a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \end{bmatrix}\end{align} (식 2) 식 2의 두 행렬의 내적 연산은 앞 객체의 행과 뒤 객체의 열의 사이에서 연산이 이루어집니다. 행렬의 행...

[data analysis]중심척도: 평균(Mean)

중심척도 관련내용 최빈값(Mode) 평균(Mean) 중간값(Median) 평균(Mean) 연속형 변수의 경우 데이터 셋의 최빈값을 결정할 수 없습니다. 대신에 식 1과 같이 계산한 산술평균(average)을 중심의 척도로서 사용합니다. 일반적으로 산술평균을 평균(mean, μ) 이라 합니다. $$\mu=\frac{\sum^N_{i=0} x_i}{N}$$ (식 1) 식 1에서 N은 데이터의 총수, x는 데이터 값을 나타냅니다. 예를 들어 다음은 한 학생의 1, 2학기의 중간과 기말의 등급은 [6, 8, 9, 5]입니다.이들의 평균을 계산하면 식 2와 같습니다. μ =  6 + 8 + 9 + 5 (식 2) 4 평균은 다음 코드와 같이 반복문을 사용하여 계산할 수 있지만 python의 다양한 패키지에서 제공하는 평균 산출을 위한 함수나 메소드를 사용할 수 있습니다. 다음 코드는 np.mean() 함수를 적용한 결과입니다. id="npMean"> numpy.mean(x, axis=none, skipna=na) 객체 x는 numpy array 형 지정한 축을 기준으로 산술평균을 계산 (= x.mean(axis=none) ) x.mean()의 경우 객체 x는 array, pandas 자료형인 DataFrame, Series 형 모두 가능 axis: 연산 기준 축 지정, axis: 0(기본값, 열평균), 1(행평균) 자료가 결측치를 포함할 경우 처리 방식을 인자 skipna에 지정하며 기본값은 결측치를 무시합니다. grade=[6, 8, 9, 5] total=0 for i in grade: total +=i total 28 mu=total/len(grade); mu 7.0 np.mean(grade) 7.0 예) 다음의 빈도표로부터 평균을 계산합니다. 값 빈도 2 4 5 8 8 ...