기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[data analysis]중심척도: 평균(Mean)

중심척도

관련내용

평균(Mean)

연속형 변수의 경우 데이터 셋의 최빈값을 결정할 수 없습니다. 대신에 식 1과 같이 계산한 산술평균(average)을 중심의 척도로서 사용합니다. 일반적으로 산술평균을 평균(mean, μ)이라 합니다.

$$\mu=\frac{\sum^N_{i=0} x_i}{N}$$ (식 1)

식 1에서 N은 데이터의 총수, x는 데이터 값을 나타냅니다.

예를 들어 다음은 한 학생의 1, 2학기의 중간과 기말의 등급은 [6, 8, 9, 5]입니다.이들의 평균을 계산하면 식 2와 같습니다.

μ = 6 + 8 + 9 + 5(식 2)
4

평균은 다음 코드와 같이 반복문을 사용하여 계산할 수 있지만 python의 다양한 패키지에서 제공하는 평균 산출을 위한 함수나 메소드를 사용할 수 있습니다. 다음 코드는 np.mean() 함수를 적용한 결과입니다.

  • id="npMean"> numpy.mean(x, axis=none, skipna=na)
    • 객체 x는 numpy array 형
    • 지정한 축을 기준으로 산술평균을 계산 (= x.mean(axis=none))
      x.mean()의 경우 객체 x는 array, pandas 자료형인 DataFrame, Series 형 모두 가능
    • axis: 연산 기준 축 지정, axis: 0(기본값, 열평균), 1(행평균)
    • 자료가 결측치를 포함할 경우 처리 방식을 인자 skipna에 지정하며 기본값은 결측치를 무시합니다.
grade=[6, 8, 9, 5]
total=0
for i in grade:
    total +=i
total
28
mu=total/len(grade); mu
7.0
np.mean(grade)
7.0

예)

다음의 빈도표로부터 평균을 계산합니다.

빈도
2 4
5 8
8 6

각 값의 빈도수가 제시된 것으로 데이터 셋에서 그 값의 총합은 값·빈도 가 됩니다. 평균은 식 3와 같이계산됩니다.

μ = 2·4 + 5·8 + 8·6(식 3)
4 + 8 + 6

값들의 수 또는 변수의 수가 많을 경우 행렬 연산을 적용하는 것이 보다 유용합니다. 다음 코드는 식 4와 같이 실행되는 행렬곱을 적용하기 위해 np.dot(x, y) 함수를 사용한 것입니다.

  • numpy.dot(x,y)
    • 객체 x와 y의 행렬곱 결과를 반환
$$\begin{bmatrix} x_1&x_2&\cdots&x_n\end{bmatrix} \begin{bmatrix}f_1\\f_2\\\vdots\\f_n \end{bmatrix}=x_1f_1+x_2f-2+\cdots+x_nf_n$$(식 4)
value=np.array([2, 5, 8])
frequency=np.array([[4],[8],[6]])
total=np.dot(value, frequency)
print(total)
[96]
mu=total/np.sum(frequency)
print(mu.round(2))
[5.33]

예)

평균이 15, 총합이 315인 경우 데이터 크기를 결정합니다.

조건에 따른 데이터의 크기는 식 1.2.2를 적용하여 식 1.2.6과 같이 결정합니다.

15 = 315(식 1.2.6)
n
→ n = 315
15
mu=15
total=315
n=total/mu
n
21.0

다음의 데이터 셋에는 다른 값들과 두드러진 차이를 보이는 값(들)을 포함할 수 있으며 이러한 값을 이상치(outlier)라고 합니다. 평균은 식 1에서 나타낸 것과 같이 모든 수의 합을 다룹니다. 그러므로 평균은 본질적으로 이러한 이상치에 매우 민감합니다.

np.random.seed(0)
data=np.random.randint(1, 5, 10)
print(data)
[1 4 2 1 4 4 4 4 2 4]
data.mean()
3.0
data1=np.append([100], [data[1:]])
print(data1)
[100   4   2   1   4   4   4   4   2   4]
data1.mean()
12.9
data1[1:].mean().round(3) #이상치를 제외한 평균
3.222

평균은 이상치 등의 조절과 함께 데이터 셋의 훌륭한 중심 위치정보를 제공하며 그 데이터의 대표값으로 사용할 수 있습니다. 특히 자료의 크기가 증가할수록 대표값으로 평균의 신뢰도는 증가합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...