기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[data analysis] 중심척도: 중간값(median)

중심척도

관련내용

중간값(Median)

데이터의 중심은 값들이 몰려있는 부분에 집중되는 지점입니다. 평균(mean)은 그 지점을 결정하는 방법이지만 이상치의 존재 등으로 전체의 중심을 왜곡할 가능성이 존재합니다. 평균의 약점을 보완할 수 있는 다른 중심 측정치로 중간값(Median)을 사용할 수 있습니다. 예를 들어 인원 9명인 그룹의 다이어트 처방을 위해 약함과 강함으로 분류하고자 할 경우 처방의 근거는 그 그룹의 평균 몸무게를 기준으로 구분할 수 있습니다. 그러나 다음의 결과와 같이 문제를 제시할 수 있습니다.

weight=np.array([38, 35, 45, 30, 48, 33, 42, 39,100])
print(weight)
[ 38,  35,  45,  30,  48,  33,  42,  39, 100]
print('%.3f'%weight.mean())
45.556
print('%.3f'%weight[:-1].mean())#이상치를 제외한 경우
38.750

위 코드에서 나타낸 것과 같이 그 그룹의 일원 중 한 명의 몸무게는 나머지에 비해 현격한 차이를 보입니다. 즉, 이상치인 값이 포함되어 있습니다. 이 상태에서 평균 몸무게는 약 45.6 kg 이지만 이상치를 제외한 경우 평균은 약 38.8 kg으로 상이한 차이가 존재합니다. 강한 또는 약한 처방의 기준이 위의 두 값 사이에 존재하는 경우 불필요한 처방이 이루어질 수 있습니다. 이와 같이 이상치가 존재할 경우 평균은 그 값에 매우 민감하므로 바람직하지 않은 판단의 근거로 작용할 가능성을 가집니다. 평균 대신 데이터들 중간에 위치한 값을 중심을 대표하는 위치값으로 사용할 수 있습니다. 이러한 측정치를 중간값 (median)으로 정의합니다.

[중간값(Median)]

데이터 셋의 중간에 위치하는 값으로 다음 과정으로 산출합니다.

  1. 모든 값을 올림차순 또는 내림차순으로 정렬합니다.
  2. 데이터의 총수(n)를 결정
    • n이 홀수인 경우 중간에 위치한 값
    • n이 짝수인 경우 중간에 위치한 두 값의 평균
  3. 다음과 같이 중간에 위치한 값을 결정

이 예의 경우 데이터 정렬은 함수 np.sort()를 적용하여 실행할 수 있습니다. 데이터 수(N)는 9개이므로 중간값의 위치는 4.5(← 9/2)입니다. 이 인덱스를 반올림하여 5번째의 값을 중간값으로 결정합니다. 파이썬에서 인덱스는 0부터 시작하므로 다음 코드에서는 객체의 4번째 인덱스에 위치한 값을 호출하였습니다.

  • np.sort(x, axis=-1, kind="quicksort")
    • 객체 x를 지정한 축(axis)에 따라 정렬합니다.
    • kind는 정렬을 위한 알고리즘 방법을 지정( "quicksort", "mergesort", "heapsort" )
weightSort=np.sort(weight)
print(weightSort)
[ 30,  33,  35,  38,  39,  42,  45,  48, 100]
weightSort[4]
39

중간값은 np.median()을 사용하여 직접적으로 산출할 수 있습니다.

  • numpy.median(x, axis=none, …)
    • 지정한 축을 기준으로 중간값을 반환
np.median(weight)
39.0

예)

34, 12, 5, 42, 7, 55의 중간값을 결정합니다.

d=np.array([34, 12, 5, 42, 7, 55])
dsort=np.sort(d)
print(dsort)
[ 5,  7, 12, 34, 42, 55]
medIdx=len(d)/2
medIdx
3.0
med=(dsort[2]+dsort[3])/2
med
23.0
np.median(d)
23.0

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...