기본 콘텐츠로 건너뛰기

라벨이 ffill인 게시물 표시

[matplotlib]quiver()함수

[data analysis] 결측치 조정

내용 무한값 처리 결측치와 무한값 처리 기존 값 적용 where, mask 결측치와 무한값 처리 결측치 무한값 찾기에서 소개한 것과 같이 무한값과 결측치는 데이터 분석에 에러의 요인이 될 수 있습니다. 이들을 처리하는 방법을 알아봅니다. 무한값 처리 import math import numpy as np import pandas as pd np.random.seed(3) x=np.random.rand(4, 3) x[1,2]=float("inf") print(x) [[0.5507979 0.70814782 0.29090474] [0.51082761 0.89294695 inf] [0.12558531 0.20724288 0.0514672 ] [0.44080984 0.02987621 0.45683322]] 객체 x에서 무한값의 인덱스를 결정하기 위해 각 요소에 대한 무한값의 여부를 True/False로 반환하는 np.isinf() 와 조건에 부합하는 인덱스를 반환하는 np.where(조건) 함수를 사용할 수 있습니다. infId=np.where(np.isinf(x)) infId (array([1], dtype=int64), array([2], dtype=int64)) 위의 결과와 같이 행과 열의 인덱스를 별도로 반환 됩니다. x[infId] array([inf]) np.delete(x, index, axis=None) x: 객체 index: 제거할 행 또는 열 인덱스로 기준축에 따라 행 또는 열이 결정됩니다. axis: 기준 축 객체 x의 무한값의 인덱스는 [1, 2]입니다. 다음 코드는 0축 즉, 행축을 기준으로 1행을 제거하는 것입니다. print(np.delete(x, 1, 0)) [[0.5507979 0.70814782 0.29090474] [0.12558531 0.20724288...

한국과 외국의 시계열 자료의 합병

한국 금융자료와 외국 자료의 합병 시계열 자료는 날짜등의 시간에 따라 생산되는 자료입니다. 대표적으로 일일 주가자료는 거래일 기준으로 자료가 생산됩니다. 별도의 자료를 합치는 경우 시간이 이질적이라면 합쳐진 자료에 결측치가 포함됩니다. 이 경우 결측치를 조절하는 방법을 알아봅니다. 한국의 코스피와 환율, 외국의 지수 자료를 합쳐봅니다. import numpy as np import pandas as pd import FinanceDataReader as fdr 지수명 코스피 환율 다우 나스탁 필라델피아반도체 변동성(미국) 코드명 KS11 USD/KRW DJI IXIC SOXX VIX 코스피 지수의 모든 변수(Open, High, Low, Close, Volume, Change)와 다른 지수들의 종가(Close)를 호출하였습니다. 이 호출은 FinanceDataReader 패키지의 DataReader() 함수를 적용하였습니다. st=pd.Timestamp(2010,3, 1) et=pd.Timestamp(2022, 6, 4) nme={'exchg':'USD/KRW','dj':"DJI",'nasd':'IXIC','soxx':"SOXX", 'vix':'VIX'} kos=fdr.DataReader('KS11', st, et) stock={} for i, j in zip(nme.keys(), nme.values()): stock[i]=fdr.DataReader(j, st, et)['Close'] stock=pd.DataFrame(stock.values(), index=stock.keys()).T kos.tail(3) Close Open High Low Volume Change Date 2022-05-31 2...