기본 콘텐츠로 건너뛰기

라벨이 predict()인 게시물 표시

[matplotlib]quiver()함수

R 회귀분석

내용 회귀분석과 방법 OLS 회귀 단순회귀 회귀계수의 t-검정 회귀식의 평가 회귀분석(Regression) 회귀분석과 방법 여러 면에서 회귀 분석은 통계의 핵심입니다. 하나 이상의 예측 변수(독립 변수 또는 설명 변수라고도 함)에서 반응 변수(종속 변수, 기준 변수 또는 결과 변수라고도 함)를 예측하는 데 사용되는 방법론 집합에 대한 광범위한 용어입니다. 일반적으로 회귀분석은 반응변수와 관련된 설명변수를 식별하고, 관련된 관계의 형태를 설명하고, 설명변수로부터 반응변수를 예측하기 위한 방정식을 제공하는 데 사용할 수 있습니다. 예를 들어, 운동 생리학자는 회귀 분석을 사용하여 러닝머신에서 운동하는 동안 사람이 태울 예상 칼로리 수를 예측하는 방정식을 개발할 수 있습니다. 반응 변수는 소모된 칼로리 수(소비된 산소량에서 계산)이며 예측 변수에는 운동 시간(분), 목표 심박수에서 보낸 시간 비율, 평균 속도(mph), 나이( 년), 성별 및 체질량 지수(BMI)가 될 수 있습니다. 이론적인 관점에서 분석은 다음과 같은 질문에 답하는 데 도움이 됩니다. 운동 시간과 소모된 칼로리 사이의 관계는 무엇입니까? 선형입니까 곡선입니까? 예를 들어, 운동은 특정 시점 이후에 소모된 칼로리 수에 덜 영향을 줍니까? 노력(목표 심박수에서 시간의 백분율, 평균 보행 속도)은 어떻게 고려됩니까? 이 관계는 젊은이와 노인, 남성과 여성, 무거움과 날씬함의 동일합니까? 실용적인 관점에서 분석은 다음과 같은 질문에 답하는 데 도움이 됩니다. BMI가 28.7인 30세 남성이 평균 속도 4로 45분 동안 걸을 때 소모할 수 있는 칼로리는 얼마입니까? 시간당 마일을 유지하고 목표 심박수를 80% 이내로 유지합니까? 사람이 걸을 때 소모할 칼로리를 정확하게 예측하기 위해 수집해야 하는 최소...