이분산인 두 소규모 표본의 비교 내용 두 독립집단의 비교 소규모 표본에서 등분산 이분산인 두 소규모 표본의 비교 두 대규모 표본의 비교 소규모 표본의 경우 다음 2가지 가정하에 t분포를 기준으로 가설검정을 실시합니다. 가정 1: 각 모집단이 정규분포를 따름 가정 2: 두 모분산이 동일 가정 1의 경우 모집단이 크다면 중심극한 정리에 의해 정규분포를 가정하는 것은 합리적입니다. 정규분포는 표준화에 의해 각 모집단의 분포의 분산은 같아집니다. 그러나 정규분포의 가정이 불확실할 경우 가정 2역시 불확실성을 가집니다. 이러한 경우는 각 표본의 분산 정도에 따라 판단합니다. 두 표본 표준편차의 비가 0.5와 2사이에 존재한다면 등분산으로 가정할 수 있습니다(식 1). $$0.5 ≤ \frac{s_1}{s_2} \le 2$$ (식 1) 위 식의 조건에 부합하지 않은 경우 또는 다른 이유로 등분산 가정이 적용되기 어려운 경우 등분산을 가정한 합동분산은 적용할 수 없습니다. 대신에 식 1과 같이 계산되는 결합확률분포의 합동분산을 적용합니다. \begin{align}E(X-Y)&=E(X)-E(Y)\\&=\mu_x-\mu_y\\\text{Var}(X-Y)&=\text{Var}(X)+\text{Var}(Y)-\text{Cov}(X,Y)\\ &=\frac{\sigma_x^2}{n_x}+\frac{\sigma_y^2}{n_y}\\&\text{Cov}(X,Y)=0\quad \because\;X,\,Y:\text{독립}\\& n: \text{샘플의 크기}, \; \mu: \text{평균},\;\sigma: \text{표준편차}\end{align} (식 1) 이 결합분포의 표준편차는 각 그룹의 샘플 규모를 고려한 것으로 결합분포의 표준오차로 사용할 수 있습니다. 소규모 표본이므로 t 분포를 기준으로 분석을 시행하기 때문에 자유도 선택의 문제가 존재합니다. 합동분산인 경우 자유도는 n 1 ...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.