기본 콘텐츠로 건너뛰기

라벨이 모수인 게시물 표시

[matplotlib]quiver()함수

[data analysis] 표본과 모집단(smaple and population)

표본과 모집단(smaple & population) 통계적 추론(statistical inference) 은 부분(표본, sample)으로 전체(모집단, population)의 모수를 추정하는 통계 분석 방법입니다. 일반적으로 여러 조건의 제약에 의해 모집단의 조사는 어렵거나 불가능한 경우가 대부분입니다. 이러한 경우 모수(population parameter) 를 알 수 없기 때문에 이들을 추정해야 됩니다. 예를 들어 거래되는 모든 주가 데이터를 획득하는 것은 어렵습니다. 그러므로 그 모집단에서 생성될 수 있는 또는 그 모집단과 유사한 특성을 가진 표본의 평균, 분산과 같은 통계량이 모수와 비슷할 것이라는 가정 하에 다양한 분석을 진행할 수 있습니다. 이 경우 표본의 통계량이 모수와 유사하다고 하는 가설의 합리성에 대한 판단이 필요하며 이러한 판단의 근거는 통계적 추론에 의해 결정할 수 있습니다. 예를 들어 초등학교 6학년의 평균신장을 측정하는 연구에서 대상은 국가 내의 모든 6학년 학생이 될 것입니다. 그러나 제한된 연구 시간과 비용은 모든 대상에 대한 조사를 어렵게 만들 수 있습니다. 이런 경우 모집단의 통계량을 계산할 수 없기 때문에 각 지역별로 임의적으로 작은 그룹을 선택하여 측정한 결과들의 평균으로 모평균을 대신할 수 있을 것입니다. 표 1에서 나타낸 것과 같이 이 연구의 경우 모든 대상이 모집단(population) 이 되고 선택한 부분들이 표본(sample) 이 됩니다. 표 1 모집단과 표본 모집단(population) 연구의 모든 대상 표본(sample) 연구를 위해 실제 측정 또는 관찰되는 부분 다음 자료의 예(표 2)와 같이 행은 모든 열에 대한 값들을 포함하는 것으로 전체 자료에 대한 샘플이 됩니다. 표 2 데이터 셋의 일반적인 형태 이름 나이 성별 키 철수 10 남 153 영희 15 여 161 길동 21 남 181 그림 1은 통계적 추론 과정에서 모...