전치 행렬(Transposed matrix) m×n 형태의 행렬 A의 행과 열을 교환한 행렬을 A의 전치 행렬이라 하며 A T 로 나타냅니다. 그 전치 행렬의 형태는 n×m 입니다. 행렬 A와 전치 행렬 사이에 식 1의 관계가 성립합니다. A i,j = A T j,i (식 1) 전치 행렬은 numpy array 객체의 속성 .T 또는 함수 transpose() 를 사용하여 생성할 수 있습니다. A=np.array([[2, 4, 9], [3, 6, 7]]) print(A) [[2 4 9] [3 6 7]] print(np.transpose(A)) [[2 3] [4 6] [9 7]] print(A.T) [[2 3] [4 6] [9 7]] 식 2와 같이 전치 행렬을 다시 전치시키면 원시행렬(original matrix)이 됩니다. (A T ) T = A (식 2) print(A.T.T==A) [[ True True True] [ True True True]] 두 행렬의 행렬곱의 전치 행렬은 식 3과 같이 계산됩니다. (A·B) T = B T ·A T (식 3) 다음 코드에서 임의의 행렬 객체를 생성하기 위해 numpy.random 모듈의 randint() 함수를 사용하였습니다. 생성된 랜덤수의 재현성을 위해 numpy.random.seed() 함수를 사용하였습니다. np.random.seed(0) B=np.random.randint(-10, 10, (3,3)) print(B) [[ 2 5 -10] [ -7 -7 -3] [ -1 9 8]] # A·B AB=A@B # BT·AT BtAt=np.dot(B.T, A.T) print(np.equal(AB.T, BtAt)) [[ True True] [ True True] [ True True]]
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.