기본 콘텐츠로 건너뛰기

라벨이 Breusch-Pegan인 게시물 표시

[matplotlib]quiver()함수

[data analysis] 다중 회귀모형의 진단

다중 회귀모형의 진단 내용 정규성(normality) 과 이상치(outlier) 평가 독립성 선형성과 자기상관 등분산성 단순회귀모형과 같이 회귀분석은 몇 가지 가정 을 전제한 상태에서 모형을 구축합니다. 그러므로 그 가정의 충족되지 않은 자료들에서 생성된 모형의 경우 적용과 적합성에 문제가 발생됩니다. 예를 들어 데이터가 정규분포를 따르지 않는 상태에서 구축된 회귀모형의 예측 범위는 매우 넓어질 수 있으므로 그 자체의 의미가 감소됩니다. 또한 변수들의 독립성에 문제가 있는 경우 반응변수에 대한 설명변수들의 선택에서 발생하는 오류는 실제와 다른 결과를 가져올 수 있습니다. 이 원인들은 모두 회귀모형의 신뢰도를 악화시키며 예측정도를 빈약하게 만들 수 있습니다. 정규성(normality) 과 이상치(outlier) 평가 예 1) 다음 코드에 의해 생성된 자료 코스피지수(kos), 코스탁지수(kq), kodex 레버리지(kl), kodex 인버스(ki), 그리고 원달러환율(WonDol)의 일일 종가들을 설명변수로 사용하여 삼성전자(sam)의 일일 종가를 추정하는 회귀모델을 구축해 봅니다. (이 자료에서 설명변수는 반응변수보다 1일 앞선 데이터 입니다.) import numpy as np import pandas as pd import yfinance as yf st=pd.Timestamp(2023,1, 10) et=pd.Timestamp(2024, 5, 30) code=["^KS11", "^KQ11", "122630.KS", "114800.KS","KRW=X","005930.KS"] nme=["kos","kq","kl", "ki", "WonDol","sam" ] da={} for i, j in zip(nme,c...

[data analysis] Breusch-Pegan 검정

Breusch-Pegan 검정 Breusch-Pegan 검정은 회귀모델에서 발생하는 잔차의 이분산성을 검정합니다. 귀무가설과 대립가설은 다음과 같습니다. ( 회귀분석 에 대한 지식이 필요합니다. ) H0: 등분산입니다.(Homoscedasticity) H1: 이분산이 존재합니다.(Heteroscedasiticity) 이 방법은 다음 과정으로 실현됩니다. 회귀모델 생성 모델의 잔차 제곱을 계산 반응변수로서 잔차 제곱을 사용하여 새로운 회귀모델을 생성 nR 2 new 를 통계량으로 χ 2 검정 실시(자유도는 설명변수의 수) n: 데이터 크기, R 2 new : 잔차 제곱을 반응변수로 설정한 회귀모델의 결정계수 이 검정은 statsmodels.stats.diagnostic.het_breuschpagan(잔차, 설명변수) 함수를 사용합니다. 이 함수는 라그랑쥬 승수 통계량(Lagrange multiplier statistic)과 p-value, f-통계량과 p-value를 반환합니다. ( 회귀분석 참조 )