기본 콘텐츠로 건너뛰기

라벨이 character인 게시물 표시

통계관련 함수와 메서드 사전

A B C d E F G H I K L M N O P Q R S T U V W Z A statsmodels.ap.stats.anova_lm(x) statsmodels.formula.api.ols 에 의해 생성되는 모형 즉, 클래스 인스턴스(x)를 인수로 받아 anova를 실행합니다. np.argsort(x, axis=-1, kind=None) 객체 x를 정렬할 경우 각 값에 대응하는 인덱스를 반환합니다. Axis는 기준 축을 지정하기 위한 매개변수로서 정렬의 방향을 조정할 수 있음(-1은 기본값으로 마지막 축) pandas.Series.autocorr(lag=1) lag에 전달한 지연수에 따른 값들 사이의 자기상관을 계산 B scipy.stats.bernoulli(x, p) 베르누이분포에 관련된 통계량을 계산하기 위한 클래스를 생성합니다. x: 랜덤변수 p: 단일 시행에서의 확률 scipy.stats.binom(x, n, p) 이항분포에 관련된 통계량을 계산하기 위한 클래스를 생성합니다. x: 랜덤변수 n: 총 시행횟수 p: 단일 시행에서의 확률 C scipy.stats.chi2.pdf(x, df, loc=0, scale=1) 카이제곱분포의 확률밀도함수를 계산 $$f(x, k) =\frac{1}{2^{\frac{k}{2}−1}Γ(\frac{k}{2})}x^{k−1}\exp\left(−\frac{x^2}{2}\right)$$ x: 확률변수 df: 자유도 pd.concat(objs, axis=0, join=’outer’, …) 두 개이상의 객체를 결합한 새로운 객체를 반환. objs: Series, DataFrame 객체. Axis=0은 행단위 즉, 열 방향으로 결합, Axis=1은 열단위 즉, 행 방향으

R 수학과 통계등의 내장함수들

내용 함수들 수학함수 통계함수 확률함수 문자함수 유용한 함수들 데이터 관리를 위한 함수들과 제어문 함수들 수학함수 수학함수 함수 설명 abs(x) 절대값반환 abs(-4) → 4. sqrt(x) 제곱근, sqrt(25) → 5 &eqiv; 25^(0.5). ceiling(x) x보다 작지않은 가장 작은 정수 ceiling(3.21) → 4 floor(x) x보다 크지않은 가장 큰 정수 floor(3.21) → 3 trunc(x) x의 값 중 숫점 이하의 값을 버림으로서 형성된 정수 trunc(3.21) → 3 round(x, digits=n) x의 지정한 자릿수+1 에서 반올림 round(3.475, digits=2) → 3.48. signif(x, digits=n ) x를 지정된 유효 자릿수로 반올림 signif(3.475, digits=2) → 3.5. cos(x) , sin(x) , tan(x) Cosine, sine, and tangent cos(2) → -0.416. acos(x) , asin(x) , atan(x) 삼각함수의 역함수, arc-cosine, arc-sine, and arc-tangent acos(-0.416) → 2. cosh(x) , sinh(x) , tanh(x) 쌍곡선 함수인 hyperbolic cosine, sine, and tangent sinh(2) → 3.627. acosh(x) , asinh(x) , atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent asinh(3.627) → 2. log(x, base=n) 밑수가 a인 로그함수 log(10, 2) = log(10)/log(2) \→ 3.321928

R의 기본과 벡터

내용 기본사항 벡터와 연산 객체 R 기본과 벡터 기본사항 R은 vector, list, dataframe과 같은 데이터 구조에서 작동합니다. 가장 단순한 구조는 숫자 벡터로, 정렬된 숫자 모음으로 구성된 단일 엔터티입니다. 5개의 숫자, 즉 10.4, 5.6, 3.1, 6.4 및 21.7로 구성된 x라는 벡터를 설정하려면 R 명령을 사용합니다. > x<-c(10.4, 5.6, 3.1, 6.4, 21.7); x [1] 10.4 5.6 3.1 6.4 21.7 함수 c()는 내부의 요소들을 연결하고 그 결과의 객체를 '<-' 연산자를 통해 객체 x에 할당한 것입니다. '<-': 할당연산자 위의 실행은 assign() 함수에 의해 실행될 수 있습니다. > assign("y", c(10.4, 5.6, 3.1, 6.4, 21.7)) > y [1] 10.4 5.6 3.1 6.4 21.7 할당연산자의 방향을 반대로 할 수 있습니다. > c(10.4, 5.6, 3.1, 6.4, 21.7)->z; z [1] 10.4 5.6 3.1 6.4 21.7 당연히 위 표현(expression)에 의해 생성되는 객체는 다음과 같이 다른 계산에 적용되거나 새로운 객체로 할당될 수 있습니다. > 1/z [1] 0.09615385 0.17857143 0.32258065 0.15625000 0.04608295 > zz<-c(z, 0, z); zz [1] 10.4 5.6 3.1 6.4 21.7 0.0 10.4 5.6 3.1 6.4 21.7 벡터와 연산 vector의 산술은 요소별로 일어나며 계산의 대상이 모두 같은 길이를 가질 필요는 없습니다. 즉, 짧은 벡터는 대응되는 긴 벡

문자(Character)와 문자열(String), 그리고 표시형식

내용 문자와 문자열 문자열은 Binary Sequence 문자열의 생성과 인덱스 Immutable 객체 문자열 연산 Escape sequence 대표적인 문자열 함수 문자열 형식 지정 printf-style .format() 메소드 Formatted string literals 문자(Character)와 문자열(String), 그리고 표시형식 문자와 문자열 문자(character) 'ㄱ', 'ㄴ', 'a','b'와 같은 기호 Unicode character로 정의 이진수로 변환되어 메모리에 저장 string(문자열) character(문자)들로 구성된 시퀀스(sequence) 코드 포인트 (code point): 문자를 변환한 이진수 컴퓨터의 메모리는 모든 대상을 0과 1로 변환하여 2진수 기반으로 인식하고 저장합니다. 저장된 수들의 일정한 범위를 문자로 전환할 수 있는 규칙을 가집니다. 예를 들어 'a' 는 97 , 'ㄱ'은 12593과 같은 규칙으로 문자를 표현합니다. 이러한 과정과 같이 문자를 2진수로 코드화하는 것을 인코딩 (encoding)이라하며 반대로 그 코드포인트를 문자로 전환하는 과정을 디코딩 (decoding)이라 합니다. s='coffee' len(s) 6 b=s.encode('utf-8') b b'coffee' s1='커피' len(s1) 2 b1=s1.encode() b1 b'\xec\xbb\xa4\xed\x94\xbc' len(b1) 6 b1.decode() '커피' 인코딩의 결과에 접두어 b는 byte literal을 나타냅니다. 위에서 소개한 인코딩