기본 콘텐츠로 건너뛰기

라벨이 Euler_number인 게시물 표시

[matplotlib]quiver()함수

지수와 로그함수

내용 지수함수(Exponential Function) 단순이자(simple interest) 복리 이자(compound interest) 오일러 수(Euler number) 지수 급수(Exponential series) 자연로그(Natural Logarithms) 지수와 로그함수 지수함수(Exponential Function) 주어진 시간 동안 항상 자신의 크기에 비례하는 방식으로 증가하는 양을 생각해 봅시다. 이러한 증가는 일정한 금리로 돈에 대한 이자를 계산하는 과정으로 설명할 수 있습니다. 자본이 클수록 주어진 시간에 대한 이자의 증가액은 커집니다. 이러한 이자는 단순이자 와 복리 이자 로 구분됩니다. 전자의 경우 자본은 고정된 상태로 유지되고 후자의 경우 이자가 자본에 추가되므로 원금에 대한 증가율 역시 증가됩니다. import numpy as np import pandas as pd from sympy import * import matplotlib.pyplot as plt 단순이자(simple interest) 원금이 1000원이고 연 이자율을 10%로 가정합니다. 이 경우 증분은 매년 100원이 됩니다. 다음 10년 동안 계속하면 그 시간이 끝날 때까지 총액이 2000원으로 원금의 두 배가 될 것입니다. 연 이자율이 5% 였다면 재산을 두 배로 늘리려면 20년, 연이율이 2%라면 50년이 소요될 것입니다. 연간 이자가 r 이면 재산을 두 배로 늘리기 위한 기간은 식 1에 의해 결정할 수 있습니다.(등차수열) $$\begin{align}\tag{1} y &= y_0(1 + Nr)\\ y_0&: 원금\\ r&: 연 이자율\\ N&: 보유기간(년) \end{align}$$ 복리 이자(compound interest) 원금 1000원과 10%의 연 이자율을 가정합니다. 매년 이자를 원금에 합산한다고 하면 1년후 원금은 1100원이 2년 후에...