고유값 분해(Eigen-Decomposition) 식 1과 같이 행렬 A가 가역행렬인 P과 대각행렬 D를 사용하여 유사변환이 가능하다면 그 행렬은 대각 가능(Diagonalizable) 하다고 합니다. 즉, 식 2와 같이 행렬 A의 고유값과 고유행렬에 대한 유사변환(Similarity transformation) 이 성립합니다. 예를 들어 2×2 정방행렬 A에 대해 고유값과 고유벡터들로 분해하는 다음과 같으며 고유값분해 (Eigenvalue Decomposition) 라고 합니다. \begin{align}\text{A}& =\text{PDP}^{-1}\\\tag{식 1}& P:\;\text{고유행렬}\\& D:\;\text{고유값으로 구성된 대각행렬}\end{align} \begin{align} A=& \begin{bmatrix} a_{11}& a_{12}\\a_{21}& a_{22} \end{bmatrix}\\ \tag{식 2}\text{고유값}& =\begin{bmatrix} \lambda_1 & \lambda_2 \end{bmatrix}\\ \text{고유행렬}& =\begin{bmatrix} v_{11}& v_{12}\\v_{21}& v_{22} \end{bmatrix}\\ \begin{bmatrix} a_{11}& a_{12}\\a_{21}& a_{22} \end{bmatrix}&= \begin{bmatrix} v_{11}& v_{12}\\v_{21}& v_{22} \end{bmatrix}\begin{bmatrix} \lambda_1& 0\\0& \lambda_2 \end{bmatrix}\left(\begin{bmatrix} v_{11}& v_{12}\\v_{21}& v_{22} \end{bmatrix}\right)^{-1}\end{align} 예 1) 다음 행렬 A에 위 대각화를...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.