기본 콘텐츠로 건너뛰기

라벨이 내적인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra]직교벡터(Orthogonal vectors)

직교벡터(Orthogonal vectors) 식 1에 의하면 두 벡터의 사잇각이 직각일 경우 정사영 의 노름(norm)은 0이 됩니다. 즉, 내적은 0으로 식 2와 같이 나타낼 수 있습니다. \begin{align}u\cdot v & = \Vert{u}\Vert \Vert{v}\Vert \cos(\theta)\\ \cos(\theta) &= \frac{u\cdot v}{\Vert{u}\Vert \Vert{v}\Vert}\end{align} (식 1) \begin{align}x·y &= \Vert{x}\Vert \Vert{y}\Vert \cos(90°)\\ &= 0\end{align} (식 2) 식 2가 성립하는 두 벡터들은 서로 직교벡터(Orthogonal vectors) 이며 직교성(orthogonality )을 가진다고 합니다. 그림 1에서 벡터 u 와 v , 그리고 벡터 u 와 -v 는 모두 직각관계를 나타냅니다. 그림 1. 직교벡터 fig, ax=plt.subplots(figsize=(2,2)) ax.arrow(0,0, 1,0,color="r", lw=2, head_width=0.05) ax.arrow(0,0, -1,0, color="b", lw=2, head_width=0.05) ax.arrow(0,0, 0, 1, color="g", lw=2, head_width=0.05) ax.arrow(-1, 0, 1, 1, ls="-.", color="b",alpha=0.3) ax.arrow(1, 0, -1, 1, ls="-.", color="r",alpha=0.3) ax.spines['left'].set_position(("data", 0)) ax.spines['bottom'].set_position(("data...

[Linear Algebra] 내적(inner product)

내적(Inner product) a, b 두 벡터의 내적(inner product, dot product) 은 식 1과 같이 정의합니다. \begin{align}a&=\begin{bmatrix} a_1\\a_2\end{bmatrix}\; b=\begin{bmatrix} b_1\\b_2\end{bmatrix}\\ a\cdot b& = a_1\times b_1 + a_2\times b_2\end{align} (식 1) 식 1의 결과와 같이 두 벡터의 내적은 스칼라입니다. 같은 인덱스를 가진 성분들사이의 곱들의 총합으로 식 2와 같이 나타낼 수 있습니다. 행렬은 두 개 이상의 벡터들로 구성된 객체로 두 행렬 사이에 내적을 계산할 수 있습니다. 행렬들 사이에 이루어지는 내적을 행렬곱(matrix product) 라고 하지만 구분없이 닷곱, 내적곱이라고 명명합니다. \begin{align}\text{dot prodcut}:&\;\begin{bmatrix} a_1& a_2\end{bmatrix}\begin{bmatrix} b_1\\b_2\end{bmatrix}= a_1 b_1 + a_2 b_2\\\text{matrix product}:&\; \begin{bmatrix} a_{11}& a_{12}\\a_{21}& a_{22}\end{bmatrix}\begin{bmatrix} b_{11}& b_{12}\\b_{21}& b_{22}\end{bmatrix}=\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} \\a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \end{bmatrix}\end{align} (식 2) 식 2의 두 행렬의 내적 연산은 앞 객체의 행과 뒤 객체의 열의 사이에서 연산이 이루어집니다. 행렬의 행...