기본 콘텐츠로 건너뛰기

라벨이 항등행렬인 게시물 표시

[matplotlib]quiver()함수

[Linear Algebra] 항등 행렬 (Identity Matrix) 과 대각행렬(Diagonal matix)

항등 행렬 (Identity Matrix) 과 대각행렬(Diagonal matix) 항등 행렬 (Identity Matrix) 대각행렬(Diagonal matix) 항등 행렬 (Identity Matrix) 항등 행렬은 정방 행렬 중 대각 원소가 모두 1이고 그 외 모든 원소들은 0인 행렬이며 I n 으로 나타냅니다. n은 행 또는 열의 수를 나타냅니다. 항등 행렬과의 행렬 곱은 그 행렬 자신이 됩니다(식 1). AI = A (식 1) I: 항등행렬 np.eye(n) 함수로 n×n 차원의 항등행렬을 생성할 수 있습니다. np.random.seed(1) A=np.random.randint(1,10, (3,3)) print(A) [[6 9 6] [1 1 2] [8 7 3]] I=np.eye(3) print(I) [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] print(A@I) [[6. 9. 6.] [1. 1. 2.] [8. 7. 3.]] 대각행렬(Diagonal matix) 식 2와 같이 정방 행렬의 주 대각 요소들을 제외한 다른 요소들이 0인 행렬을 대각 행렬이라 합니다. 주 대각 요소를 포함하여 모든 요소가 0인 영행렬, 그리고 항등 행렬은 대표적인 대각 행렬입니다. $$\begin{bmatrix}{\color{red}a_{11}} & 0 & 0\\ 0 & {\color{red}a_{22}} & 0\\0 & 0 & {\color{red}a_{33}}\end{bmatrix}$$ (식 2) 대각 행렬은 np.diag() 함수를 사용하여 생성할 수 있습니다. print(np.diag([1,2,3])) [[1 0 0] [0 2 0] [0 0 3]]

R: 역행렬을 사용하여 선형시스템의 해 결정

내용 항등행렬 역행렬 행렬식 연립방정식에 적용 역행렬을 사용하여 선형시스템의 해 결정 항등행렬 항등행렬 : eye(n) > eye(3) [,1] [,2] [,3] [1,] 1 0 0 [2,] 0 1 0 [3,] 0 0 1 역행렬 역행렬: 다음의 관계를 만족하는 행렬 B를 역행렬(inverse matrix) 라고 합니다. $$A \cdot B = I \rightarrow B=A^{-1}$$ 이러한 역행렬을 가지는 행렬을 가역행렬(reversible matrix) 라고 합니다. > set.seed(2) > a A A_inv A%*%A_inv [,1] [,2] [1,] 1 -1.110223e-16 [2,] 0 1.000000e+00 > round(A%*%A_inv) [,1] [,2] [1,] 1 0 [2,] 0 1 위 행렬 A의 행렬식은 0이 아닙니다. > det(A) [1] -49 행렬식 행렬은 그 행렬로 부터 계산할 수 있는 행렬식(determinant)이 0인 경우 역행렬이 존재하지 않는 특성을 가지고 있습니다. 즉, 행렬식은 어떤 행렬에 대해 특이 행렬 여부를 결정할 수 있는 근거가 됩니다. 행렬식 ≠ 0 → 가역행렬 그러나 위 명제의 역은 성립하지 않습니다. R함수 det() 를 사용하여 계산합니다. 연립방정식에 적용 역행렬을 사용하여 연립방정식의 해를 결정할 수 있습니다. $$ \begin{matrix} \begin{matrix} x + y + 2z& =9 \\2x + 4y- 3z& = 1\\ 3x + 6y- 5z& = 0 \end{matrix} \rightarrow & \begin{bmatrix}1&1&2\\2&4&-3\\3&6&...