내적(Inner product) a, b 두 벡터의 내적(inner product, dot product) 은 식 1과 같이 정의합니다. \begin{align}a&=\begin{bmatrix} a_1\\a_2\end{bmatrix}\; b=\begin{bmatrix} b_1\\b_2\end{bmatrix}\\ a\cdot b& = a_1\times b_1 + a_2\times b_2\end{align} (식 1) 식 1의 결과와 같이 두 벡터의 내적은 스칼라입니다. 같은 인덱스를 가진 성분들사이의 곱들의 총합으로 식 2와 같이 나타낼 수 있습니다. 행렬은 두 개 이상의 벡터들로 구성된 객체로 두 행렬 사이에 내적을 계산할 수 있습니다. 행렬들 사이에 이루어지는 내적을 행렬곱(matrix product) 라고 하지만 구분없이 닷곱, 내적곱이라고 명명합니다. \begin{align}\text{dot prodcut}:&\;\begin{bmatrix} a_1& a_2\end{bmatrix}\begin{bmatrix} b_1\\b_2\end{bmatrix}= a_1 b_1 + a_2 b_2\\\text{matrix product}:&\; \begin{bmatrix} a_{11}& a_{12}\\a_{21}& a_{22}\end{bmatrix}\begin{bmatrix} b_{11}& b_{12}\\b_{21}& b_{22}\end{bmatrix}=\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} \\a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \end{bmatrix}\end{align} (식 2) 식 2의 두 행렬의 내적 연산은 앞 객체의 행과 뒤 객체의 열의 사이에서 연산이 이루어집니다. 행렬의 행...
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.